REABILITAÇÃO SENSÓRIO-MOTORA ASSOCIADA À FOTOBIOMODULAÇÃO TRANSCRANIANA EM PACIENTES COM LESÃO DO SISTEMA NERVOSO CENTRAL


Autores

  • Carolina Lobo Guimarães Pertencente ao Laboratório de Engenharia de Reabilitação Sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).
  • Ana Paula Pinto Pertencente ao Laboratório de Engenharia de Reabilitação Sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).
  • Humberto Gimenes Macedo Pertencente ao Laboratório de Física e Astronomia. Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP)
  • Virgínia Klausner Pertencente ao Laboratório de Física e Astronomia. Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).
  • Fernanda Púpio Silva Lima Pertencente ao Laboratório de Engenharia de reabilitação sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).
  • Rodrigo Alvaro Brandão Lopes-Martins Human Movement and Rehabilitation (PPGMHR), University Center of Anápolis (UniEVANGÉLICA), Anápolis, GO, Brasil. Programa de Pós-Graduação em Bioengenharia - Laboratório de Biofotônica e Terapêutica Experimental em Saúde e Estética - Universidade Brasil. http://orcid.org/0000-0002-4533-1335
  • Mário Oliveira Lima Pertencente ao Laboratório de Engenharia de reabilitação sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).

DOI:

https://doi.org/10.18066/revistaunivap.v27i56.2492

Resumo

As doenças neurológicas geralmente estão associadas a importantes déficits funcionais, dificultando a execução de atividades de vida diária e autocuidado. Pesquisas recentes demonstram efeitos positivos da Fotobiomodulação Transcraniana (FBM-T) para estimulação do tecido cerebral. O estudo teve como objetivo avaliar os efeitos da FBM-T associada ao treinamento aeróbico na função do sistema musculoesquelético de indivíduos com lesões neurológicas crônicas. Participaram deste ensaio clínico duplo-cego 16 voluntários com diferentes lesões do SNC, de ambos os sexos, idade média de 51,9±13,9 anos e marcha preservada. Os voluntários foram divididos aleatoriamente em 2 grupos (Treino FBM-T ativo + treino aeróbico e FBM-T placebo + treino aeróbico). O programa de reabilitação foi realizado em esteira ergométrica, na frequência de 2 vezes semanais e com duração total de 12 semanas. A FBM-T (3 lasers no λ= 660nm e 3 Lasers no λ= 808nm, 100mW, 6J/laser, 60seg/ponto, 36J por ponto, energia total 108J/cm2) foi aplicada em 3 pontos, sendo estes Fz, F7 e F8 segundo o Sistema Internacional 10-20 de EEG. Foram avaliados RMS do músculo reto femoral parético ou de maior comprometimento no pré-tratamento, 8ª semana e 12ª semana. Nota-se um aumento da atividade elétrica do grupo Laser nas coletas de RMS isotônica e isométrica, e redução do recrutamento muscular em ortostatismo quando comparados o início e o final do treinamento. Sugere-se que a FBM-T pode ter sido um fator influente para o aumento do recrutamento muscular no grupo Laser.

Downloads

Não há dados estatísticos.

Biografia do Autor

Carolina Lobo Guimarães, Pertencente ao Laboratório de Engenharia de Reabilitação Sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).

Mestranda em Engenharia Biomédica. Especialista em Disfunções neurológicas na criança, adulto e idoso. Graduada em Fisioterapia. Laboratório de Engenharia de Reabilitação Sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifume, 2911, Urbanova, São José dos Campos/SP, CEP:12244-390

Ana Paula Pinto, Pertencente ao Laboratório de Engenharia de Reabilitação Sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).

Mestranda em Engenharia Biomédica. Graduada em Fisioterapia. Laboratório de Engenharia de Reabilitação Sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP)., Av. Shishima Hifume, 2911, Urbanova, São José dos Campos/SP, CEP:12244-390

Humberto Gimenes Macedo, Pertencente ao Laboratório de Física e Astronomia. Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP)

Graduado em Engenharia da Computação. Laboratório de Física e Astronomia. Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifume, 2911, Urbanova, São José dos Campos/SP, CEP:12244-390.

Virgínia Klausner, Pertencente ao Laboratório de Física e Astronomia. Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).

Doutora em Geofísica. Mestre em Física e Astronomia. Graduada em Engenharia Elétrica.  Laboratório de Física e Astronomia. Instituto de Pesquisa e Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifume, 2911, Urbanova, São José dos Campos/SP, CEP:12244-390.

Fernanda Púpio Silva Lima, Pertencente ao Laboratório de Engenharia de reabilitação sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).

Doutora em Engenharia Biomédica. Mestre em Ciências Biológicas. Especialista em Fisioterapia Aquática. Graduada em Fisioterapia. Laboratório de Engenharia de reabilitação sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifume, 2911, Urbanova, São José dos Campos/SP, CEP:12244-390.

Rodrigo Alvaro Brandão Lopes-Martins, Human Movement and Rehabilitation (PPGMHR), University Center of Anápolis (UniEVANGÉLICA), Anápolis, GO, Brasil. Programa de Pós-Graduação em Bioengenharia - Laboratório de Biofotônica e Terapêutica Experimental em Saúde e Estética - Universidade Brasil.

Professor Titular do Programa de Bioengenharia da Universidade Brasil. Palestrante e Consultor Internacional na área de PEsquisa Clínica e Experimental em Fotobiomodulação e Agentes eletrofísicos em Ciências Estéticas e Doenças Músculo-esqueléticas. Coordenador do Mestrado em Engenharia Biomédica da UNIVAP (2018-2020). Diretor do Núcleo de Pesquisas Tecnológicas e Coordenador do Programa de Pós-Graduação em Engenharia Biomédica da Universidade de Mogi das Cruzes - UMC de 2015 a 2017. Possui graduação em Ciências Biológicas pela Universidade Federal do Rio de Janeiro (1991), mestrado em Farmacologia pela Universidade Estadual de Campinas (1994) e doutorado em Biologia Celular e Molecular pela Fundação Oswaldo Cruz (1998). Realizou seu Pós-Doutoramento pela Universidade de São Paulo. Professor Livre-Docente pela Faculdade de Ciências Médicas da UNICAMP. É professor Associado da University of Bergen (Noruega) e da Bergen University College - Noruega, Departamento de Saúde Pública e Reabilitação da Faculdade de Medicina, onde mantém intensa colaboração científica desde 2004. Foi Professor da Universidade de São Paulo no período de 2005-2015. Também é Professor visitante da Faculdade de Medicina da Universidade de Lorraine (França) no Biopolo. Tem experiência na área de Engenharia Biomédica, com ênfase em Laser de Baixa Potência em Medicina, atuando principalmente nos seguintes temas: laser de baixa potência em doenças inflamatórias músculo-esqueléticas, fadiga e desempenho muscular e reparo tecidual. Trabalha ainda com fisiopatologia e farmacologia de doenças inflamatórias músculo-esqueléticas, articulares e reumáticas, fadiga e lesões da musculatura esquelética em diferentes situações como diabetes, hipercolesterolemia entre outras. Foi idealizador e Diretor do Programa de Pós-Graduação em Biofotônica Aplicada às Ciências da Saúde da Universidade Nove de Julho.

Mário Oliveira Lima, Pertencente ao Laboratório de Engenharia de reabilitação sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP).

Doutor em Engenharia Biomédica. Mestre em Ciências Biológicas. Especialista em Fisioterapia Neurológica. Graduado em Fisioterapia. Laboratório de Engenharia de reabilitação sensório-motora. Instituto de pesquisa e desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifume, 2911, Urbanova, São José dos Campos/SP, CEP:12244-390.

Referências

ALMEIDA, P. et al. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med. Sci., v. 27, n. 2, p. 453-458, 2011.

ANTUNES, H. K. M. et al. Exercício físico e função cognitiva: uma revisão. Rev. Bras. Med. Esporte, Niterói, v. 12, n. 2, p. 108-114, 2006.

AZE, O. et al. Structural and physiological muscle changes after post-stroke hemiplegia: A systematic review. Ann Phys. Rehabil. Med., v. 59, p. e79, 2016.

BIERING-SORENSEN, F.; NIELSEN, J. B.; KINGLER, K. Spasticity-assessment: a review. Spinal Cord., [s.l.], v. 44, p. 708-722, 2006.

BILLINGER, S. A. et al. Reduced Cardiorespiratory Fitness After Stroke: Biological Consequences and Exercise-Induced Adaptations. Stroke Res Treat., v. 2012, p. 1-11, 2012.

BORELLA, M. P.; SACCHELLI, T. Os efeitos da prática de atividades motoras sobre a neuroplasticidade. Rev. Neurocienc., v. 17, n. 2, p. 61-9, 2009.

BOYNE, P. et al. Exercise intensity affects acute neurotrophic and neurophysiological responses post-stroke. J. Appl. Physiol., v. 126, p. 431–443, 2019 2018. Doi:10.1152/japplphysiol.00594.2018

BOYNE, P. et al. Effects of Exercise Intensity on Acute Circulating Molecular Responses Poststroke. Neurorehabil. Neural Repair, v. 34, n.3, p. 222–234, 2020. Doi/10.1177/1545968319899915

CASSANO, P. et al. Near-Infrared Transcranial Radiation for Major Depressive Disorder: Proof of concept study. Psychiatry J., v. 2015, 2015. DOI:10.1155/2015/352979

CHAIEB, L. et al. Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex. Front. Behav. Neurosci., v. 9, 2015. DOI: 10.3389/fnbeh.2015.00147

CHAN, A. S. et al. Photobiomodulation Improves the Frontal Cognitive Function of Older Adults. J. Geriatr. Psychiatry, v. 34, n. 2, p. 369–377, 2019.

COFFEY, V. G. et al. Concurrent exercise training: do opposites distract? J. Physiol., v. 595, n. 9, p. 2883-2896, 2016

COMBS-MILLER, S. A. et al. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled Trial. Clin. Rehabil., v. 28, n. 9, p. 873-884, 2014.

DE MARCHI, T. et al. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med. Sci., v. 27, n. 2, p. 453-8, 2012.

DISNER, S. G; BEEVERS, C. G.; GONZALEZ-LIMA, F. Transcranial Laser Stimulation as Neuroenhancement for Attention Bias Modification in Adults with Elevated Depression Symptoms. Bain Stimul., v. 9, n. 5, p. 780-787, 2016.

EDWARDS, J. D. Cardiovascular disease and other childhood-onset chronic conditions in adults with cerebral palsy. Dev. Med. Child Neurol., v. 61, p. 859-860, 2019.

ENGLISH, C. et al. Loss of skeletal muscle mass after stroke: a systematic review. Int. J. Stroke, v. 5, 395–402, 2010. DOI: 10.1111/j.1747-4949.2010.00467.x

FALCK, R. S. et al. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol. Aging., v. 79, p. 119-130, 2019.

FURLAN, J. C.; FEHLINGS, M. G. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg. Focus, v. 25, n. 5: E13, 2008.

HAMBLIN, M. R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin., v. 6, p. 113-124, 2016

HENNESSY, M.; HAMBLIN, M. R. Photobiomodulation and the brain: a new paradigm. J. Opt., v. 19, n. 1, 2017.

HESSE, S.; WERNER, C.; BYHAHN, M. Transcranial low-level laser therapy may improve alertness and awareness in traumatic brain injured subjects with severe disorders of consciousness: A case series. Int. Arch. Med., v. 8, n. 144, p. 1-12, 2015.

HIPSKIND, S. G. et al. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cerebral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. Photomed. Laser Surg., v. 37, n. 2, p. 77-84, 2018.

HUANG, T. et al. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports, v. 24, p. 1-10, 2014.

KONSTANTINOVIC, L. M. et al. Transcranial application of near‐infrared low‐level laser can modulate cortical excitability. Lasers Surg. Med., n. 45, p. 648-653, 2013.

LAMPL, Y. et al. Infrared Laser Therapy for Ischemic Stroke: A New Treatment Strategy: Results of the NeuroThera Effectiveness and SafetyTrial–1 (NEST-1). Stroke, v. 38, n.6, p. 1843-1849, 2007.

LEAL JUNIOR, E. C. et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to post exercise recovery. J. Orthop. Sports Phys. Ther., v. 40, n. 8, p. 524-32, 2010.

LEE, M. J. et al. Comparison of Effect of Aerobic Cycle Training and Progressive Resistance Training on Walking Ability After Stroke: A Randomized Sham Exercise–Controlled Study. J. Am. Geriatr. Soc., v. 56, n. 6, p. 976‐985, 2008.

LI, L. et al. Acute Aerobic Exercise Increases Cortical Activity during Working Memory: A Functional MRI Study in Female College Students. PLoSOne, v. 9, n. 6, e99222, 2014.

MONICH, V. A.; BAVRINA, A. P.; MALINOVSKAYA, S. L. Modification in oxidative processes in muscle tissues exposed to laser- and light-emitting diode radiation. Lasers Med. Sci., v. 33, n. 1, p. 159–164, 2018.

MUNARI, D. et al. High-intensity treadmill training improves gait ability, VO2peak and cost of walking in stroke survivors: preliminary results of a pilot randomized controlled trial. Eur. J. Phys. Rehabil. Med., v. 54, n. 33, 408-418, 2018.

NAESER, M. A. et al. Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic Traumatic Brain Injury: Two Case Reports. Photomed Laser Surg., v. 29, n. 5, p. 351–358, 2011.

NAMPO, F. K. et al. Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers Med. Sci., v. 31, n. 9, p. 1957-1970, 2016.

NEVES, M. F. et al. Long-term analyses of spastic muscle behavior in chronic poststroke patients after near-infrared low-level laser therapy (808 nm): a double-blinded placebo-controlled clinical trial. Lasers Med. Sci., v. 35, p. 1459–1467, 2020. https://doi.org/10.1007/s10103-019-02920-3

O'LEARY, R. A.; NICHOL, A. D. Pathophysiology of severe traumatic brain injury. J. Neurosurg. Sci., v. 62, n. 5, p. 542-548, 2018.

OUESLATI, A. et al. Photobiomodulation suppress alpha-synuclein-induced toxicity in an AAV-based rat genetic model of Parkinson’s disease. PLoS One, v. 10, n. 10, p. Pe0140880, 2015. DOI: 10.1371/journal.pone.0140880.

PIASSAROLI, C. A. P. et al. Modelos de Reabilitação Fisioterápica em Pacientes Adultos com sequelas de AVE isquêmico. Rev. Neurocienc., v. 20, n. 1, p. 128-137, 2012.

REIS, M. C. et al. Immediate effects of low-intensity laser (808 nm) on fatigue and strength of spastic muscle. Lasers Med. Sci., v. 30, n. 3, p. 1089-1096, 2015.

ROJAS, J. C.; BRUCHEY, A. K.; GONZALEZ-LIMA, F. Low-level light therapy improves cortical metabolic capacity and memory retention. J. Alzheimers Dis., v. 32, n. 3, p. 741-752, 2012.

SALGADO, A. S. I. et al. The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med. Sci., v. 30, n. 1, p. 339–346, 2014.

SCHIFFER, F. et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav. Brain Funct., v. 5, n. 46, p. 1-13, 2009.

SEVERINSEN, K. et al. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors. Muscle Nerve, v. 53, n. 5, p. 748-54, 2016.

SYNNOT, A. et al. Interventions for managing skeletal muscle spasticity following traumatic brain injury. Cochrane Database Syst. Rev., v.11, n.11, p. CD008929, 2017. doi: 10.1002/14651858.CD008929.pub2..

TEIXEIRA-SALMELA, L. F. et al. Fortalecimento muscular e condicionamento físico em hemiplégicos. Acta Fisiátrica, v. 7, n. 3, p. 108-118; 2000.

TIAN, F. et al. Transcranial laser stimulation improves human cerebral oxygenation. Lasers surg. med., v. 48, p. 343-349, 2016.

VARGAS, E. et al. Beneficial neurocognitive effects of transcranial laser in older adults. Lasers in Medical Science, v. 32, n. 5, p. 1153–1162, 2017.

YUAN, Y. et al. Transcranial photobiomodulation with near-infrared light from childhood to elderliness: simulation of dosimetry. Neurophotonics, V.7, n.1, p.015009-015009, 2020.

ZINCHENKO, E. et al. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for non-pharmacologic therapy of alzheimer’s disease. Biomed. Opt. Express, v. 10, n. 8, p. 4003-4017, 2019.

ZIVIN, J. A. et al. Effectiveness and Safety of Transcranial Laser Therapy for Acute Ischemic Stroke (NEST-2). Stroke, v. 40, p. 1359-1364, 2009.

Downloads

Publicado

2021-10-26

Como Citar

Lobo Guimarães, C., Pinto, A. P., Gimenes Macedo, H., Klausner, V., Púpio Silva Lima, F., Lopes-Martins, R. A. B., & Oliveira Lima, M. (2021). REABILITAÇÃO SENSÓRIO-MOTORA ASSOCIADA À FOTOBIOMODULAÇÃO TRANSCRANIANA EM PACIENTES COM LESÃO DO SISTEMA NERVOSO CENTRAL. Revista Univap, 27(56). https://doi.org/10.18066/revistaunivap.v27i56.2492

Artigos mais lidos pelo mesmo(s) autor(es)

> >>