LÍQUIDOS IÔNICOS COM APLICAÇÃO NA CAPTURA DE CARBONO: MODELAÇÃO E SIMULAÇÃO

MODELAÇÃO E SIMULAÇÃO


IONIC LIQUIDS APPLIED TO CARBON CAPTURE: MODELING AND SIMULATION

MODELING AND SIMULATION

Authors

DOI:

https://doi.org/10.18066/revistaunivap.v28i58.2654

Abstract

Ionic liquids have been highlighted for several applications that contribute to promote green chemistry and sustainability concepts in processes of gas capture, especially greenhouse gases such as CO2. This work aims to characterize ionic liquids, such as 1-alkyl-3-methylimidazolium chloride, via computational simulation. Molecular dynamics methods were used to obtain relevant thermophysical properties in the temperature range from 298.15K to 363.15K, which was compared to experimental data obtained from the literature in order to validate the molecular models and the force field. The quantum-mechanical calculations based on density functional theory (DFT) provided relevant information about the most stable molecular geometries of these compounds in their isolated and dimer forms. The results obtained from different computational methodologies elucidated the preferred position of chloride ions surrounding the imidazolium ring, as well as the stabilization of ionic pairs that form a three-dimensional structure. This work will guide future works in which it is intended to study gel formation, such as of ionic liquids and solvent mixtures, particularly water and short alcohols.

Downloads

Download data is not yet available.

Author Biographies

Rafaela Nascimento Martins, Universidade de Évora (Portugal)

Centro de Química de Évora

Universidade de Évora

LAQV REQUIMTE

Vanesa Claudia Gisela Mitchell Ferrari, Universidade de Évora (Portugal)

Centro de Química de Évora

Universidade de Évora

LAQV REQUIMTE

Luís Filipe Guerreiro Martins, Universidade de Évora (Portugal)

Centro de Química de Évora

Universidade de Évora

LAQV REQUIMTE

References

BARCA, G.M.J.; BERTONI, C.; CARRINGTON, L.; DATTA, D.; DE SILVA, N.; DEUSTUA, J. E.; FEDOROV, D.G.; GOUR, J.R.; GUNINA, A.O.; GUIDEZ, E.; HARVILLE, T.; IRLE, S.; IVANIC, J.; KOWALSKI, K.; LEANG, S.S.; LI, H.; LI, W.; LUTZ, J.J.; MAGOULAS, I.; POOLE, J.; PRUITT, S.R.; RENDELL, A.P.; ROSKOP, L.B.; RUEDENBERG, K.; SATTASATHUCHANA, T.; SCHMIDT, M.W.; SHEN, J.; SLIPCHENKO, L.; SOSONKINA, M.; SUNDRIYAL, V.; TIWARI, A.; VALLEJO, J.L.G.; WESTHEIMER, B.; WLOCH, M.; XU, P.; ZAHARIEV, F.; GORDON, M.S., J. Chem. Phys. 152, 154102. 2020.

https://doi.org/10.1063/5.0005188

BHATIAA, S.K.; BHATIA, R.K.; JEON, J.-M.; KUMAR, G.; YANG, Y.-H.; Renewable and Sustainable Energy Reviews, 110, p. 143-158. 2019. DOI: 10.1016/j.rser.2019.04.070

BODE, B.M.; GORDON, M.S., J Mol Graph Model, 16(3), p. 133-164. 1998.

DOI: 10.1016/s1093-3263(99)00002-9

CADENA, C.; ANTHONY, J.L.; SHAH, J.K.; MORROW, T.I.; BRENNECKE, J.F. e MAGINN, E.J., J. Am. Chem. Soc., 126, 16, p. 5300-5308. 2004.

https://doi.org/10.1021/ja039615x

CANONGIA LOPES, J.N.; PÁDUA, A.A.H., Theor Chem Acc 131, 1129. 2012. https://doi.org/10.1007/s00214-012-1129-7

CUI, S.T.; COCHRAN, H.D. e CUMMINGS, P.T., J. Phys. Chem. B, 103, 21 p. 4485-4491. 1999.

https://doi.org/10.1021/jp984147c

DESCHAMPS, J.; COSTA GOMES, M.F.; PÁDUA, A.A.H., Journal of Fluorine Chemistry, 125, p. 409-413. 2004.

DOI: 10.1016/j.fluchem.2003.11.003

FIRESTONE, M.A.; DZIELAWA, J.A.; ZAPOL, P.; CURTISS, L.A.; SEIFERT, S. e DIETZ, M.L., Langmuir, 18, 20, p. 7258-7260. 2002.

https://doi.org/10.1021/la0259499

GÓMEZ, E.; GONZÁLEZ, B.; DOMÍNGUEZ, A.; TOJO, E. e TOJO, J., J. Chem. Eng. Data 51, 2, p. 696–701, 2006.

https://doi.org/10.1021/je050460d

HAZRATI N.; ABDOUSS, M., BEIGI, A.A.M.; PASBAN, A. A.; REZAE, M. J. Chem. Eng. Data, 62, 10, p. 3084-3094, 2017.

https://doi.org/10.1021/acs.jced.7b00242

KAGIMOTO, J.; NAKAMURA, N.; KATOB, T. e OHNO, K., Chem. Commun., p. 2405-2407. 2009.

https://doi.org/10.1039/B902310K

KÁRÁSZOVÁ, M.; KACIRKOVÁ, M.; FRIESS, K. e IZÁK, P., Separation and Purification Technology 132, p. 93-101. 2014.

http://dx.doi.org/10.1016/j.seppur.2014.05.008

NABAIS, A.R.; MARTINS, A.P.S.; ALVES, V.D.; CRESPO, J.G.; MARRUCHO, I.M.; TOMÉ, L.C. e NEVES, L.A., Separation and Purification Technology, 222, p. 168-176. 2019.

https://doi.org/10.1016/j.seppur.2019.04.018

MOHSIN, H.M.; SHARIFF, A.M.; JOHARI, K., Separation and Purification Technology, 222, p. 297-308. 2019.

https://doi.org/10.1016/j.seppur.2019.04.029

MUKHERJEE, A.; OKOLIE, J.A.; ABDELRASOUL, A.; NIU, C.; DALAI, A K., J. Env. Sci, p. 46-63. 2019.

https://doi.org/10.1016/j.jes.2019.03.014

MURSHID, G.; MJALLI, F.S.; NASER, J.; AL-ZAKWANI, S.; HAYYAN, A., Physics and Chemistry of Liquids, 57 (4), p. 473-490. 2019.

MUTCH, G.A.; QU, L.; TRIANTAFYLLOU, G.; WEN XING, W.; FONTAINE, M.-L.; IAN S. METCALFE, I.S., J. Mater. Chem. A, 7, p. 12951-12973. 2019.

PEREIRO, A.B.; PASTORIZA-GALLEGO, M.J.; SHIMIZU, K.; MARRUCHO, I.M.; CANONGIA LOPES, J.N.; PIÑEIRO, M.M.; REBELO, L.P.N., J. Phys. Chem. B, 117, p. 10826-10833. 2013.

PEREIRO, A.B.; TOMÉ, L.C.; MARTINHO, S.; REBELO, L.P.N., MARRUCHO, I.M., Ind. Eng. Chem. Res., 52, p. 4994−5001. 2013.

POLATA, H.M.; ZEESHANB, M.; UZUNB, A.; KESKIN, S., Chem Eng J, 373, p. 1179-1189. 2019.

PRONK, S.; PÁLL, S.; SCHULZ, R.; LARSSON, P.; BJELKMAR, P.; APOSTOLOV, R.; SHIRTS, M. R.; SMITH, J. C.; KASSON, P. M.; VAN DER SPOEL, D.; HESS, B.; LINDAHL, E., Bioinformatics, 29(7), p. 845–854. 2013.

RODRIGUES, M.; CALPENA, A.C.; AMABILINO, D.B.; GARDUÑO-RAMIREZ, M.L.; PÉREZ-GARCÍA, L., J. Mater. Chem. B, 2, p. 5419-5429. 2014.

SASIKUMAR, B.; ARTHANAREESWARAN, G.; ISMAIL, A.F., Journal of Molecular Liquids, p. 266,330-341. 2018.

TOMÉ, L.C.; MARRUCHO, I.M.; Chem. Soc. Rev., 45, p. 2785-2824. 2016.

VAN DER SPOEL, D.; LINDAHL, E.; HESS, B.; GROENHOF, G.; MARK, A. E.; BERENDSEN, H. J. C., J. Comp. Chem, 26, p. 1701–1718. 2005.

YIN, K.; ZHANG, Z.; Li, X.; YANG, L.; TACHIBANA, K.; HIRANO, S., J. Mater. Chem. A, 3, p. 170-178. 2015.

YING, W.; HAN, B.; LIN, H.; CHEN, D.; PENG, X., Nanotechnology, 30, 385705 (6pp). 2019.

WANG, L.; LIU, Y.; XU, Y.; Wei, J., Fuel, 253, p. 139-145. 2019.

ZHANG, J; SHEN, X., J. Phys. Chem. B, 117, p. 1451-1457. 2013.

URAHATA, S.M.; RIBEIRO, M.C.C., Journal of Chemical Physics, 120, p. 1855-1863. 2004.

Published

2022-06-24

How to Cite

Martins, R. N., Ferrari, V. C. G. M., & Martins, L. F. G. (2022). IONIC LIQUIDS APPLIED TO CARBON CAPTURE: MODELING AND SIMULATION. Revista Univap, 28(58). https://doi.org/10.18066/revistaunivap.v28i58.2654

Issue

Section

Computação Aplicada ao Meio Ambiente