LÍQUIDOS IÔNICOS COM APLICAÇÃO NA CAPTURA DE CARBONO: MODELAÇÃO E SIMULAÇÃO
MODELAÇÃO E SIMULAÇÃO
IONIC LIQUIDS APPLIED TO CARBON CAPTURE: MODELING AND SIMULATION
MODELING AND SIMULATION
DOI:
https://doi.org/10.18066/revistaunivap.v28i58.2654
Abstract
Ionic liquids have been highlighted for several applications that contribute to promote green chemistry and sustainability concepts in processes of gas capture, especially greenhouse gases such as CO2. This work aims to characterize ionic liquids, such as 1-alkyl-3-methylimidazolium chloride, via computational simulation. Molecular dynamics methods were used to obtain relevant thermophysical properties in the temperature range from 298.15K to 363.15K, which was compared to experimental data obtained from the literature in order to validate the molecular models and the force field. The quantum-mechanical calculations based on density functional theory (DFT) provided relevant information about the most stable molecular geometries of these compounds in their isolated and dimer forms. The results obtained from different computational methodologies elucidated the preferred position of chloride ions surrounding the imidazolium ring, as well as the stabilization of ionic pairs that form a three-dimensional structure. This work will guide future works in which it is intended to study gel formation, such as of ionic liquids and solvent mixtures, particularly water and short alcohols.
Downloads
Download data is not yet available.
References
BARCA, G.M.J.; BERTONI, C.; CARRINGTON, L.; DATTA, D.; DE SILVA, N.; DEUSTUA, J. E.; FEDOROV, D.G.; GOUR, J.R.; GUNINA, A.O.; GUIDEZ, E.; HARVILLE, T.; IRLE, S.; IVANIC, J.; KOWALSKI, K.; LEANG, S.S.; LI, H.; LI, W.; LUTZ, J.J.; MAGOULAS, I.; POOLE, J.; PRUITT, S.R.; RENDELL, A.P.; ROSKOP, L.B.; RUEDENBERG, K.; SATTASATHUCHANA, T.; SCHMIDT, M.W.; SHEN, J.; SLIPCHENKO, L.; SOSONKINA, M.; SUNDRIYAL, V.; TIWARI, A.; VALLEJO, J.L.G.; WESTHEIMER, B.; WLOCH, M.; XU, P.; ZAHARIEV, F.; GORDON, M.S., J. Chem. Phys. 152, 154102. 2020.
https://doi.org/10.1063/5.0005188
BHATIAA, S.K.; BHATIA, R.K.; JEON, J.-M.; KUMAR, G.; YANG, Y.-H.; Renewable and Sustainable Energy Reviews, 110, p. 143-158. 2019. DOI: 10.1016/j.rser.2019.04.070
BODE, B.M.; GORDON, M.S., J Mol Graph Model, 16(3), p. 133-164. 1998.
DOI: 10.1016/s1093-3263(99)00002-9
CADENA, C.; ANTHONY, J.L.; SHAH, J.K.; MORROW, T.I.; BRENNECKE, J.F. e MAGINN, E.J., J. Am. Chem. Soc., 126, 16, p. 5300-5308. 2004.
https://doi.org/10.1021/ja039615x
CANONGIA LOPES, J.N.; PÁDUA, A.A.H., Theor Chem Acc 131, 1129. 2012. https://doi.org/10.1007/s00214-012-1129-7
CUI, S.T.; COCHRAN, H.D. e CUMMINGS, P.T., J. Phys. Chem. B, 103, 21 p. 4485-4491. 1999.
https://doi.org/10.1021/jp984147c
DESCHAMPS, J.; COSTA GOMES, M.F.; PÁDUA, A.A.H., Journal of Fluorine Chemistry, 125, p. 409-413. 2004.
DOI: 10.1016/j.fluchem.2003.11.003
FIRESTONE, M.A.; DZIELAWA, J.A.; ZAPOL, P.; CURTISS, L.A.; SEIFERT, S. e DIETZ, M.L., Langmuir, 18, 20, p. 7258-7260. 2002.
https://doi.org/10.1021/la0259499
GÓMEZ, E.; GONZÁLEZ, B.; DOMÍNGUEZ, A.; TOJO, E. e TOJO, J., J. Chem. Eng. Data 51, 2, p. 696–701, 2006.
https://doi.org/10.1021/je050460d
HAZRATI N.; ABDOUSS, M., BEIGI, A.A.M.; PASBAN, A. A.; REZAE, M. J. Chem. Eng. Data, 62, 10, p. 3084-3094, 2017.
https://doi.org/10.1021/acs.jced.7b00242
KAGIMOTO, J.; NAKAMURA, N.; KATOB, T. e OHNO, K., Chem. Commun., p. 2405-2407. 2009.
https://doi.org/10.1039/B902310K
KÁRÁSZOVÁ, M.; KACIRKOVÁ, M.; FRIESS, K. e IZÁK, P., Separation and Purification Technology 132, p. 93-101. 2014.
http://dx.doi.org/10.1016/j.seppur.2014.05.008
NABAIS, A.R.; MARTINS, A.P.S.; ALVES, V.D.; CRESPO, J.G.; MARRUCHO, I.M.; TOMÉ, L.C. e NEVES, L.A., Separation and Purification Technology, 222, p. 168-176. 2019.
https://doi.org/10.1016/j.seppur.2019.04.018
MOHSIN, H.M.; SHARIFF, A.M.; JOHARI, K., Separation and Purification Technology, 222, p. 297-308. 2019.
https://doi.org/10.1016/j.seppur.2019.04.029
MUKHERJEE, A.; OKOLIE, J.A.; ABDELRASOUL, A.; NIU, C.; DALAI, A K., J. Env. Sci, p. 46-63. 2019.
https://doi.org/10.1016/j.jes.2019.03.014
MURSHID, G.; MJALLI, F.S.; NASER, J.; AL-ZAKWANI, S.; HAYYAN, A., Physics and Chemistry of Liquids, 57 (4), p. 473-490. 2019.
MUTCH, G.A.; QU, L.; TRIANTAFYLLOU, G.; WEN XING, W.; FONTAINE, M.-L.; IAN S. METCALFE, I.S., J. Mater. Chem. A, 7, p. 12951-12973. 2019.
PEREIRO, A.B.; PASTORIZA-GALLEGO, M.J.; SHIMIZU, K.; MARRUCHO, I.M.; CANONGIA LOPES, J.N.; PIÑEIRO, M.M.; REBELO, L.P.N., J. Phys. Chem. B, 117, p. 10826-10833. 2013.
PEREIRO, A.B.; TOMÉ, L.C.; MARTINHO, S.; REBELO, L.P.N., MARRUCHO, I.M., Ind. Eng. Chem. Res., 52, p. 4994−5001. 2013.
POLATA, H.M.; ZEESHANB, M.; UZUNB, A.; KESKIN, S., Chem Eng J, 373, p. 1179-1189. 2019.
PRONK, S.; PÁLL, S.; SCHULZ, R.; LARSSON, P.; BJELKMAR, P.; APOSTOLOV, R.; SHIRTS, M. R.; SMITH, J. C.; KASSON, P. M.; VAN DER SPOEL, D.; HESS, B.; LINDAHL, E., Bioinformatics, 29(7), p. 845–854. 2013.
RODRIGUES, M.; CALPENA, A.C.; AMABILINO, D.B.; GARDUÑO-RAMIREZ, M.L.; PÉREZ-GARCÍA, L., J. Mater. Chem. B, 2, p. 5419-5429. 2014.
SASIKUMAR, B.; ARTHANAREESWARAN, G.; ISMAIL, A.F., Journal of Molecular Liquids, p. 266,330-341. 2018.
TOMÉ, L.C.; MARRUCHO, I.M.; Chem. Soc. Rev., 45, p. 2785-2824. 2016.
VAN DER SPOEL, D.; LINDAHL, E.; HESS, B.; GROENHOF, G.; MARK, A. E.; BERENDSEN, H. J. C., J. Comp. Chem, 26, p. 1701–1718. 2005.
YIN, K.; ZHANG, Z.; Li, X.; YANG, L.; TACHIBANA, K.; HIRANO, S., J. Mater. Chem. A, 3, p. 170-178. 2015.
YING, W.; HAN, B.; LIN, H.; CHEN, D.; PENG, X., Nanotechnology, 30, 385705 (6pp). 2019.
WANG, L.; LIU, Y.; XU, Y.; Wei, J., Fuel, 253, p. 139-145. 2019.
ZHANG, J; SHEN, X., J. Phys. Chem. B, 117, p. 1451-1457. 2013.
URAHATA, S.M.; RIBEIRO, M.C.C., Journal of Chemical Physics, 120, p. 1855-1863. 2004.
Downloads
Published
2022-06-24
How to Cite
Martins, R. N., Ferrari, V. C. G. M., & Martins, L. F. G. (2022). IONIC LIQUIDS APPLIED TO CARBON CAPTURE: MODELING AND SIMULATION. Revista Univap, 28(58). https://doi.org/10.18066/revistaunivap.v28i58.2654
Issue
Section
Computação Aplicada ao Meio Ambiente
License
Copyright (c) 2022 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v28i58.2654Abstract
Ionic liquids have been highlighted for several applications that contribute to promote green chemistry and sustainability concepts in processes of gas capture, especially greenhouse gases such as CO2. This work aims to characterize ionic liquids, such as 1-alkyl-3-methylimidazolium chloride, via computational simulation. Molecular dynamics methods were used to obtain relevant thermophysical properties in the temperature range from 298.15K to 363.15K, which was compared to experimental data obtained from the literature in order to validate the molecular models and the force field. The quantum-mechanical calculations based on density functional theory (DFT) provided relevant information about the most stable molecular geometries of these compounds in their isolated and dimer forms. The results obtained from different computational methodologies elucidated the preferred position of chloride ions surrounding the imidazolium ring, as well as the stabilization of ionic pairs that form a three-dimensional structure. This work will guide future works in which it is intended to study gel formation, such as of ionic liquids and solvent mixtures, particularly water and short alcohols.
Downloads
References
BARCA, G.M.J.; BERTONI, C.; CARRINGTON, L.; DATTA, D.; DE SILVA, N.; DEUSTUA, J. E.; FEDOROV, D.G.; GOUR, J.R.; GUNINA, A.O.; GUIDEZ, E.; HARVILLE, T.; IRLE, S.; IVANIC, J.; KOWALSKI, K.; LEANG, S.S.; LI, H.; LI, W.; LUTZ, J.J.; MAGOULAS, I.; POOLE, J.; PRUITT, S.R.; RENDELL, A.P.; ROSKOP, L.B.; RUEDENBERG, K.; SATTASATHUCHANA, T.; SCHMIDT, M.W.; SHEN, J.; SLIPCHENKO, L.; SOSONKINA, M.; SUNDRIYAL, V.; TIWARI, A.; VALLEJO, J.L.G.; WESTHEIMER, B.; WLOCH, M.; XU, P.; ZAHARIEV, F.; GORDON, M.S., J. Chem. Phys. 152, 154102. 2020.
https://doi.org/10.1063/5.0005188
BHATIAA, S.K.; BHATIA, R.K.; JEON, J.-M.; KUMAR, G.; YANG, Y.-H.; Renewable and Sustainable Energy Reviews, 110, p. 143-158. 2019. DOI: 10.1016/j.rser.2019.04.070
BODE, B.M.; GORDON, M.S., J Mol Graph Model, 16(3), p. 133-164. 1998.
DOI: 10.1016/s1093-3263(99)00002-9
CADENA, C.; ANTHONY, J.L.; SHAH, J.K.; MORROW, T.I.; BRENNECKE, J.F. e MAGINN, E.J., J. Am. Chem. Soc., 126, 16, p. 5300-5308. 2004.
https://doi.org/10.1021/ja039615x
CANONGIA LOPES, J.N.; PÁDUA, A.A.H., Theor Chem Acc 131, 1129. 2012. https://doi.org/10.1007/s00214-012-1129-7
CUI, S.T.; COCHRAN, H.D. e CUMMINGS, P.T., J. Phys. Chem. B, 103, 21 p. 4485-4491. 1999.
https://doi.org/10.1021/jp984147c
DESCHAMPS, J.; COSTA GOMES, M.F.; PÁDUA, A.A.H., Journal of Fluorine Chemistry, 125, p. 409-413. 2004.
DOI: 10.1016/j.fluchem.2003.11.003
FIRESTONE, M.A.; DZIELAWA, J.A.; ZAPOL, P.; CURTISS, L.A.; SEIFERT, S. e DIETZ, M.L., Langmuir, 18, 20, p. 7258-7260. 2002.
https://doi.org/10.1021/la0259499
GÓMEZ, E.; GONZÁLEZ, B.; DOMÍNGUEZ, A.; TOJO, E. e TOJO, J., J. Chem. Eng. Data 51, 2, p. 696–701, 2006.
https://doi.org/10.1021/je050460d
HAZRATI N.; ABDOUSS, M., BEIGI, A.A.M.; PASBAN, A. A.; REZAE, M. J. Chem. Eng. Data, 62, 10, p. 3084-3094, 2017.
https://doi.org/10.1021/acs.jced.7b00242
KAGIMOTO, J.; NAKAMURA, N.; KATOB, T. e OHNO, K., Chem. Commun., p. 2405-2407. 2009.
https://doi.org/10.1039/B902310K
KÁRÁSZOVÁ, M.; KACIRKOVÁ, M.; FRIESS, K. e IZÁK, P., Separation and Purification Technology 132, p. 93-101. 2014.
http://dx.doi.org/10.1016/j.seppur.2014.05.008
NABAIS, A.R.; MARTINS, A.P.S.; ALVES, V.D.; CRESPO, J.G.; MARRUCHO, I.M.; TOMÉ, L.C. e NEVES, L.A., Separation and Purification Technology, 222, p. 168-176. 2019.
https://doi.org/10.1016/j.seppur.2019.04.018
MOHSIN, H.M.; SHARIFF, A.M.; JOHARI, K., Separation and Purification Technology, 222, p. 297-308. 2019.
https://doi.org/10.1016/j.seppur.2019.04.029
MUKHERJEE, A.; OKOLIE, J.A.; ABDELRASOUL, A.; NIU, C.; DALAI, A K., J. Env. Sci, p. 46-63. 2019.
https://doi.org/10.1016/j.jes.2019.03.014
MURSHID, G.; MJALLI, F.S.; NASER, J.; AL-ZAKWANI, S.; HAYYAN, A., Physics and Chemistry of Liquids, 57 (4), p. 473-490. 2019.
MUTCH, G.A.; QU, L.; TRIANTAFYLLOU, G.; WEN XING, W.; FONTAINE, M.-L.; IAN S. METCALFE, I.S., J. Mater. Chem. A, 7, p. 12951-12973. 2019.
PEREIRO, A.B.; PASTORIZA-GALLEGO, M.J.; SHIMIZU, K.; MARRUCHO, I.M.; CANONGIA LOPES, J.N.; PIÑEIRO, M.M.; REBELO, L.P.N., J. Phys. Chem. B, 117, p. 10826-10833. 2013.
PEREIRO, A.B.; TOMÉ, L.C.; MARTINHO, S.; REBELO, L.P.N., MARRUCHO, I.M., Ind. Eng. Chem. Res., 52, p. 4994−5001. 2013.
POLATA, H.M.; ZEESHANB, M.; UZUNB, A.; KESKIN, S., Chem Eng J, 373, p. 1179-1189. 2019.
PRONK, S.; PÁLL, S.; SCHULZ, R.; LARSSON, P.; BJELKMAR, P.; APOSTOLOV, R.; SHIRTS, M. R.; SMITH, J. C.; KASSON, P. M.; VAN DER SPOEL, D.; HESS, B.; LINDAHL, E., Bioinformatics, 29(7), p. 845–854. 2013.
RODRIGUES, M.; CALPENA, A.C.; AMABILINO, D.B.; GARDUÑO-RAMIREZ, M.L.; PÉREZ-GARCÍA, L., J. Mater. Chem. B, 2, p. 5419-5429. 2014.
SASIKUMAR, B.; ARTHANAREESWARAN, G.; ISMAIL, A.F., Journal of Molecular Liquids, p. 266,330-341. 2018.
TOMÉ, L.C.; MARRUCHO, I.M.; Chem. Soc. Rev., 45, p. 2785-2824. 2016.
VAN DER SPOEL, D.; LINDAHL, E.; HESS, B.; GROENHOF, G.; MARK, A. E.; BERENDSEN, H. J. C., J. Comp. Chem, 26, p. 1701–1718. 2005.
YIN, K.; ZHANG, Z.; Li, X.; YANG, L.; TACHIBANA, K.; HIRANO, S., J. Mater. Chem. A, 3, p. 170-178. 2015.
YING, W.; HAN, B.; LIN, H.; CHEN, D.; PENG, X., Nanotechnology, 30, 385705 (6pp). 2019.
WANG, L.; LIU, Y.; XU, Y.; Wei, J., Fuel, 253, p. 139-145. 2019.
ZHANG, J; SHEN, X., J. Phys. Chem. B, 117, p. 1451-1457. 2013.
URAHATA, S.M.; RIBEIRO, M.C.C., Journal of Chemical Physics, 120, p. 1855-1863. 2004.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode