FOTÓLISE DE GELO DE ETANOL POR RAIOS-X E SUAS IMPLICAÇÕES EM AMBIENTES ASTROFÍSICOS
DOI:
https://doi.org/10.18066/revistaunivap.v29i61.4387Palavras-chave:
Astroquímica experimental, Gelos astrofísicos, Etanol, X-rays, Desorção, Radiação sincrotronResumo
Neste trabalho experimental apresentamos resultados da irradiação de gelo de etanol (CH3CH2OH) por raios-X moles (feixe de banda larga) simulando, assim, os efeitos do processamento de gelos astrofísicos ricos em moléculas orgânica em ambientes espaciais. Esta molécula foi detectada no meio interestelar em regiões como Sagittarius B2 e Orion KL. Os experimentos foram realizados no laboratório de luz sincrotron LNLS/CNPEM em Campinas, SP. A amostra congelada foi analisada in-situ por espectroscopia no infravermelho (IR) em um ambiente em vácuo e foi exposta a diferentes fluências de radiação. Os resultados mostram a formação de várias novas espécies moleculares, como CO2, CO, H2O, CH4, CH3(CO)CH3 (acetona) e CH3COOH (ácido acético). Determinamos a seção de choque efetiva de destruição do etanol (~1×10-18 cm2). A seção de choque efetiva de formação das espécies filhas obtida teve valores entre 0,5 a 3,4×10-18 cm2. A fase de equilíbrio químico do gelo foi caracterizada e o dessorção total de moléculas pra fase gasosa, induzida por raios-X moles foi determinada (0,13 moléculas fóton-1). Os resultados encontrados permite entender melhor os processos de fotólise induzidos por raios-X moles em gelos ricos em matéria orgânica em ambientes espaciais.
Downloads
Referências
Barrière, N. M., Tomsick, J. A., Baganoff, F. K., Boggs, S. E., Christensen, F. E., Craig, W. W., Dexter, J., Grefenstette, B., Hailey, C. J., Harrison, F. A., Madsen, K. K., Mori, K., Stern, D., Zhang, W. W., Zhang, S., & Zoglauer, A. (2014). NuSTAR Detection of High-energy X-Ray Emission and Rapid Variability from Sagittarius A⋆ Flares. The Astrophysical Journal, 786(1), 46. https://doi.org/10.1088/0004-637X/786/1/46
Bennett, C. J. & Kaiser, R. I. (2007). On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. The Astrophysical Journal, 661(2), 899, 2007.
Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M. C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160..
Carvalho, G. A. & Pilling, S. (2020a). X-ray photolysis of CH3COCH3 ice: implications for the radiation effects of compact objects towards astrophysical ices. Monthly Notices of the Royal Astronomical Society, 498(1), 689-701.
Carvalho, G. A.& Pilling, S. (2020b). Photolysis of CH3CN Ices by Soft X-rays: Implications for the Chemistry of Astrophysical Ices at the Surroundings of X-ray Sources. The Journal of Physical Chemistry A, 124(41), 8574-8584.
Carvalho, G. A., Pilling, S., & Galvão, B. R. (2022). Characterization of acetonitrile ice irradiated by X-rays employing the procoda code–I. Effective rate constants and abundances at chemical equilibrium. Monthly Notices of the Royal Astronomical Society, 515(3), 3760-3772..
Combes, F., Gerin, M., Wootten, A., Wlodarczak, G., Clausset, F., & Encrenaz, P. J. (1987). Acetone in interstellar space. Astronomy and Astrophysics, 180, L13-L16.
Charnley, 6., Kress, M. E., Tielens, A. G. G. M., & Millar, T. J. (1995). Interstellar alcohols. The Astrophysical Journal, 448(1), 232-239.
Bonfim, V. de S., Castilho, R. B. de, Baptista, L., & Pilling, S. (2017). SO 3 formation from the X-ray photolysis of SO 2 astrophysical ice analogues: FTIR spectroscopy and thermodynamic investigations. Physical Chemistry Chemical Physics, 19(39), 26906-26917.
Freitas, F. M. & Pilling, S. (2020). Laboratory investigation of X-ray photolysis of methanol ice and its implication on astrophysical environments. Química Nova, 43(3), 521-527. https://doi.org/10.21577/0100-4042.20170510
Freitas, F. M. & Pilling, S. (2022). Laboratory investigation of electron bombardment of methanol ice and its implication on astrophysical environments. Revista Univap, (no prelo).
Grundy, W. M., Binzel, R. P., Buratti, B. J., Cook, J. C., Cruikshank, D. P., Dalle Ore, C. M., Earle, A. M., Ennico, K., Howett, C. J. A., Lunsford, A. W., Olkin, C. B., Parker, A. H., Philippe, S., Protopapa, S., Quirico, E., Reuter, D. C., Schmitt, B., Singer, K. N., Verbiscer, A. J. ... & Parker, J. Wm. (2016). Surface compositions across Pluto and Charon. Science, 351(6279), aad9189.
Gueymard, C. A. (2004). The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar energy, 76(4), 423-453.
Hudson, R. L.& Moore, M. H. (2018). Interstellar ices and radiation-induced oxidations of alcohols. The Astrophysical Journal, 857(2), 89.
Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid-and far-infrared spectroscopy of ices-Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86, 713-870.
Mehringer, D. M. et al. (1997). Detection and confirmation of interstellar acetic acid. The Astrophysical Journal, 480(1), L71.
Millar, T. J., Macdonald, G. H., & Habing, R. J. (1995). The detection of hot ethanol in G34. 3+ 0.15. Monthly Notices of the Royal Astronomical Society, 273(1), 25-29.
Owen, T. C., Roush, T. L., Cruikshank, D. P., Elliot, J. L., Young, L. A., De Bergh, C., Schmitt, B., Geballe, T. R., Brown, R. H. & Bartholomew, M. J. (1993). Surface ices and the atmospheric composition of Pluto. Science, 261(5122), 745-748.
Pearson, J., Sastry, K., Herbst, E., & De Lucia, F. (1997). Gauche Ethyl Alcohol: Laboratory Assignments and Interstellar Identification. The Astrophysical Journal, 480(1), 420-431..
Pilling, S., Duarte, E. S., Da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P. (2010). Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments. Astronomy & Astrophysics, 509, A87. https://doi.org/10.1051/0004-6361/200912274
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2010). Radiolysis of H2O: CO2 ices by heavy energetic cosmic ray analogs. Astronomy & Astrophysics, 523, A77.
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2011). Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature. Physical Chemistry Chemical Physics, 13(35), 15755-15765.
Pilling, S. & Bergantini, A. (2015). The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects.The Astrophysical Journal, 811(2), 151.
Pilling, S., Rocha, W. R. M., Freitas, F. M., & Da Silva, P. A. (2019). Photochemistry and desorption induced by X-rays in water rich astrophysical ice analogs: implications for the moon Enceladus and other frozen space environments. RSC advances, 9(49), 28823-28840.
Pilling, S., Carvalho, G. A., & Rocha, W. R. (2022). Chemical Evolution of CO2 Ices under Processing by Ionizing Radiation: Characterization of Nonobserved Species and Chemical Equilibrium Phase with the Employment of PROCODA Code. The Astrophysical Journal, 925(2), 147.
Portugal, W., Pilling, S., Boduch, P., Rothard, H., & Andrade, D. P. (2014). Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form. Monthly Notices of the Royal Astronomical Society, 441(4), 3209-3225.
Quataert, E. (2002). A thermal bremsstrahlung model for the quiescent X-ray emission from Sagittarius A. The Astrophysical Journal, 575(2), 855.
Rachid, M. G., Faquine, K., & Pilling, S. (2017). Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium. Planetary and Space Science, 149, 83-93.
Requena-Torres, M. A., Martín-Pintado, J., Rodríguez-Franco, A., Martín, S., Rodríguez-Fernández, N. J., & De Vicente, P. (2006). Organic molecules in the Galactic center-Hot core chemistry without hot cores. Astronomy & Astrophysics, 455(3), 971-985.
Schriver, A., Schriver-Mazzuoli, L., Ehrenfreund, P., & d’Hendecourt, L. (2007). One possible origin of ethanol in interstellar medium: Photochemistry of mixed CO2–C2H6 films at 11 K. A FTIR study. Chemical physics, 334(1-3), 128-137.
van Scheltinga, J. T., Ligterink, N. F. W., Boogert, A. C. A., Van Dishoeck, E. F., & Linnartz, H. (2018). Infrared spectra of complex organic molecules in astronomically relevant ice matrices-I. Acetaldehyde, ethanol, and dimethyl ether. Astronomy & Astrophysics, 611, A35.
Vasconcelos, F. D. A., Pilling, S., Rocha, W. R., Rothard, H., & Boduch, P. (2017). Energetic processing of N2: CH4 ices employing X-Rays and swift ions: implications for icy bodies in the outer solar system. The Astrophysical Journal, 850(2), 174.
Zuckerman, B., Turner, B. E., Johnson, D. R., Clark, F. O., Lovas, F. J., Fourikis, N. , Palmer, P., Morris, M., Lilley, A. E., Ball, J. A., Gottlieb, C. A., Litvak, M. M. & Penfield, H. (1975). Detection of interstellar trans-ethyl alcohol. The Astrophysical Journal, 196, L99-L102.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Revista Univap
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esse trabalho está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
http://creativecommons.org/licenses/by/4.0/legalcode