FOTÓLISE DE GELO DE ETANOL POR RAIOS-X E SUAS IMPLICAÇÕES EM AMBIENTES ASTROFÍSICOS
LABORATORY INVESTIGATION OF X-RAY PHOTOLYSIS OF ETHANOL ICE AND ITS IMPLICATION ON ASTROPHYSICAL ENVIRONMENTS
DOI:
https://doi.org/10.18066/revistaunivap.v29i61.4387
Abstract
Here we present experimental results on the irradiation of ethanol ice (CH3CH2OH) by broadband soft X-rays to simulate the effect processing of organic-rich astrophysical ices by space radiation. This molecule was detected in the interstellar medium in molecular clouds like Sagittarius B2 and towards nebulas like Orion KL. The experiments were performed at the Brazilian Synchrotron Facility LNLS/CNPEM, at Campinas, SP. The frozen sample was analyzed in-situ by infrared spectroscopy (IR) in a simulated astrophysical environment at different radiation fluences. The results show the formation of several new molecular species such as CO2, CO, H2O, CH4, CH3(CO)CH3 (acetone), and CH3COOH (acetic acid). We determined the effective destruction cross-section of ethanol (~1×10-18 cm2) and the formation cross-sections of the daughter species with values between 0.5 to 3.4×10-18 cm2. The chemical equilibrium phase of ice was characterized and desorption yield induced by X-rays was determined (0.13 molecules photon-1). The result helps us to understand the photolysis induced by X-rays in organic-rich ices in space environments.
Downloads
Download data is not yet available.
References
Barrière, N. M., Tomsick, J. A., Baganoff, F. K., Boggs, S. E., Christensen, F. E., Craig, W. W., Dexter, J., Grefenstette, B., Hailey, C. J., Harrison, F. A., Madsen, K. K., Mori, K., Stern, D., Zhang, W. W., Zhang, S., & Zoglauer, A. (2014). NuSTAR Detection of High-energy X-Ray Emission and Rapid Variability from Sagittarius A⋆ Flares. The Astrophysical Journal, 786(1), 46. https://doi.org/10.1088/0004-637X/786/1/46
Bennett, C. J. & Kaiser, R. I. (2007). On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. The Astrophysical Journal, 661(2), 899, 2007.
Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M. C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160..
Carvalho, G. A. & Pilling, S. (2020a). X-ray photolysis of CH3COCH3 ice: implications for the radiation effects of compact objects towards astrophysical ices. Monthly Notices of the Royal Astronomical Society, 498(1), 689-701.
Carvalho, G. A.& Pilling, S. (2020b). Photolysis of CH3CN Ices by Soft X-rays: Implications for the Chemistry of Astrophysical Ices at the Surroundings of X-ray Sources. The Journal of Physical Chemistry A, 124(41), 8574-8584.
Carvalho, G. A., Pilling, S., & Galvão, B. R. (2022). Characterization of acetonitrile ice irradiated by X-rays employing the procoda code–I. Effective rate constants and abundances at chemical equilibrium. Monthly Notices of the Royal Astronomical Society, 515(3), 3760-3772..
Combes, F., Gerin, M., Wootten, A., Wlodarczak, G., Clausset, F., & Encrenaz, P. J. (1987). Acetone in interstellar space. Astronomy and Astrophysics, 180, L13-L16.
Charnley, 6., Kress, M. E., Tielens, A. G. G. M., & Millar, T. J. (1995). Interstellar alcohols. The Astrophysical Journal, 448(1), 232-239.
Bonfim, V. de S., Castilho, R. B. de, Baptista, L., & Pilling, S. (2017). SO 3 formation from the X-ray photolysis of SO 2 astrophysical ice analogues: FTIR spectroscopy and thermodynamic investigations. Physical Chemistry Chemical Physics, 19(39), 26906-26917.
Freitas, F. M. & Pilling, S. (2020). Laboratory investigation of X-ray photolysis of methanol ice and its implication on astrophysical environments. Química Nova, 43(3), 521-527. https://doi.org/10.21577/0100-4042.20170510
Freitas, F. M. & Pilling, S. (2022). Laboratory investigation of electron bombardment of methanol ice and its implication on astrophysical environments. Revista Univap, (no prelo).
Grundy, W. M., Binzel, R. P., Buratti, B. J., Cook, J. C., Cruikshank, D. P., Dalle Ore, C. M., Earle, A. M., Ennico, K., Howett, C. J. A., Lunsford, A. W., Olkin, C. B., Parker, A. H., Philippe, S., Protopapa, S., Quirico, E., Reuter, D. C., Schmitt, B., Singer, K. N., Verbiscer, A. J. ... & Parker, J. Wm. (2016). Surface compositions across Pluto and Charon. Science, 351(6279), aad9189.
Gueymard, C. A. (2004). The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar energy, 76(4), 423-453.
Hudson, R. L.& Moore, M. H. (2018). Interstellar ices and radiation-induced oxidations of alcohols. The Astrophysical Journal, 857(2), 89.
Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid-and far-infrared spectroscopy of ices-Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86, 713-870.
Mehringer, D. M. et al. (1997). Detection and confirmation of interstellar acetic acid. The Astrophysical Journal, 480(1), L71.
Millar, T. J., Macdonald, G. H., & Habing, R. J. (1995). The detection of hot ethanol in G34. 3+ 0.15. Monthly Notices of the Royal Astronomical Society, 273(1), 25-29.
Owen, T. C., Roush, T. L., Cruikshank, D. P., Elliot, J. L., Young, L. A., De Bergh, C., Schmitt, B., Geballe, T. R., Brown, R. H. & Bartholomew, M. J. (1993). Surface ices and the atmospheric composition of Pluto. Science, 261(5122), 745-748.
Pearson, J., Sastry, K., Herbst, E., & De Lucia, F. (1997). Gauche Ethyl Alcohol: Laboratory Assignments and Interstellar Identification. The Astrophysical Journal, 480(1), 420-431..
Pilling, S., Duarte, E. S., Da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P. (2010). Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments. Astronomy & Astrophysics, 509, A87. https://doi.org/10.1051/0004-6361/200912274
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2010). Radiolysis of H2O: CO2 ices by heavy energetic cosmic ray analogs. Astronomy & Astrophysics, 523, A77.
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2011). Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature. Physical Chemistry Chemical Physics, 13(35), 15755-15765.
Pilling, S. & Bergantini, A. (2015). The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects.The Astrophysical Journal, 811(2), 151.
Pilling, S., Rocha, W. R. M., Freitas, F. M., & Da Silva, P. A. (2019). Photochemistry and desorption induced by X-rays in water rich astrophysical ice analogs: implications for the moon Enceladus and other frozen space environments. RSC advances, 9(49), 28823-28840.
Pilling, S., Carvalho, G. A., & Rocha, W. R. (2022). Chemical Evolution of CO2 Ices under Processing by Ionizing Radiation: Characterization of Nonobserved Species and Chemical Equilibrium Phase with the Employment of PROCODA Code. The Astrophysical Journal, 925(2), 147.
Portugal, W., Pilling, S., Boduch, P., Rothard, H., & Andrade, D. P. (2014). Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form. Monthly Notices of the Royal Astronomical Society, 441(4), 3209-3225.
Quataert, E. (2002). A thermal bremsstrahlung model for the quiescent X-ray emission from Sagittarius A. The Astrophysical Journal, 575(2), 855.
Rachid, M. G., Faquine, K., & Pilling, S. (2017). Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium. Planetary and Space Science, 149, 83-93.
Requena-Torres, M. A., Martín-Pintado, J., Rodríguez-Franco, A., Martín, S., Rodríguez-Fernández, N. J., & De Vicente, P. (2006). Organic molecules in the Galactic center-Hot core chemistry without hot cores. Astronomy & Astrophysics, 455(3), 971-985.
Schriver, A., Schriver-Mazzuoli, L., Ehrenfreund, P., & d’Hendecourt, L. (2007). One possible origin of ethanol in interstellar medium: Photochemistry of mixed CO2–C2H6 films at 11 K. A FTIR study. Chemical physics, 334(1-3), 128-137.
van Scheltinga, J. T., Ligterink, N. F. W., Boogert, A. C. A., Van Dishoeck, E. F., & Linnartz, H. (2018). Infrared spectra of complex organic molecules in astronomically relevant ice matrices-I. Acetaldehyde, ethanol, and dimethyl ether. Astronomy & Astrophysics, 611, A35.
Vasconcelos, F. D. A., Pilling, S., Rocha, W. R., Rothard, H., & Boduch, P. (2017). Energetic processing of N2: CH4 ices employing X-Rays and swift ions: implications for icy bodies in the outer solar system. The Astrophysical Journal, 850(2), 174.
Zuckerman, B., Turner, B. E., Johnson, D. R., Clark, F. O., Lovas, F. J., Fourikis, N. , Palmer, P., Morris, M., Lilley, A. E., Ball, J. A., Gottlieb, C. A., Litvak, M. M. & Penfield, H. (1975). Detection of interstellar trans-ethyl alcohol. The Astrophysical Journal, 196, L99-L102.
Downloads
Published
2023-03-28
How to Cite
Pilling, S., & Freitas, F. M. (2023). LABORATORY INVESTIGATION OF X-RAY PHOTOLYSIS OF ETHANOL ICE AND ITS IMPLICATION ON ASTROPHYSICAL ENVIRONMENTS. Revista Univap, 29(61). https://doi.org/10.18066/revistaunivap.v29i61.4387
Issue
Section
Ciências Exatas e da Terra
License
Copyright (c) 2023 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v29i61.4387Abstract
Here we present experimental results on the irradiation of ethanol ice (CH3CH2OH) by broadband soft X-rays to simulate the effect processing of organic-rich astrophysical ices by space radiation. This molecule was detected in the interstellar medium in molecular clouds like Sagittarius B2 and towards nebulas like Orion KL. The experiments were performed at the Brazilian Synchrotron Facility LNLS/CNPEM, at Campinas, SP. The frozen sample was analyzed in-situ by infrared spectroscopy (IR) in a simulated astrophysical environment at different radiation fluences. The results show the formation of several new molecular species such as CO2, CO, H2O, CH4, CH3(CO)CH3 (acetone), and CH3COOH (acetic acid). We determined the effective destruction cross-section of ethanol (~1×10-18 cm2) and the formation cross-sections of the daughter species with values between 0.5 to 3.4×10-18 cm2. The chemical equilibrium phase of ice was characterized and desorption yield induced by X-rays was determined (0.13 molecules photon-1). The result helps us to understand the photolysis induced by X-rays in organic-rich ices in space environments.
Downloads
References
Barrière, N. M., Tomsick, J. A., Baganoff, F. K., Boggs, S. E., Christensen, F. E., Craig, W. W., Dexter, J., Grefenstette, B., Hailey, C. J., Harrison, F. A., Madsen, K. K., Mori, K., Stern, D., Zhang, W. W., Zhang, S., & Zoglauer, A. (2014). NuSTAR Detection of High-energy X-Ray Emission and Rapid Variability from Sagittarius A⋆ Flares. The Astrophysical Journal, 786(1), 46. https://doi.org/10.1088/0004-637X/786/1/46
Bennett, C. J. & Kaiser, R. I. (2007). On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. The Astrophysical Journal, 661(2), 899, 2007.
Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M. C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160..
Carvalho, G. A. & Pilling, S. (2020a). X-ray photolysis of CH3COCH3 ice: implications for the radiation effects of compact objects towards astrophysical ices. Monthly Notices of the Royal Astronomical Society, 498(1), 689-701.
Carvalho, G. A.& Pilling, S. (2020b). Photolysis of CH3CN Ices by Soft X-rays: Implications for the Chemistry of Astrophysical Ices at the Surroundings of X-ray Sources. The Journal of Physical Chemistry A, 124(41), 8574-8584.
Carvalho, G. A., Pilling, S., & Galvão, B. R. (2022). Characterization of acetonitrile ice irradiated by X-rays employing the procoda code–I. Effective rate constants and abundances at chemical equilibrium. Monthly Notices of the Royal Astronomical Society, 515(3), 3760-3772..
Combes, F., Gerin, M., Wootten, A., Wlodarczak, G., Clausset, F., & Encrenaz, P. J. (1987). Acetone in interstellar space. Astronomy and Astrophysics, 180, L13-L16.
Charnley, 6., Kress, M. E., Tielens, A. G. G. M., & Millar, T. J. (1995). Interstellar alcohols. The Astrophysical Journal, 448(1), 232-239.
Bonfim, V. de S., Castilho, R. B. de, Baptista, L., & Pilling, S. (2017). SO 3 formation from the X-ray photolysis of SO 2 astrophysical ice analogues: FTIR spectroscopy and thermodynamic investigations. Physical Chemistry Chemical Physics, 19(39), 26906-26917.
Freitas, F. M. & Pilling, S. (2020). Laboratory investigation of X-ray photolysis of methanol ice and its implication on astrophysical environments. Química Nova, 43(3), 521-527. https://doi.org/10.21577/0100-4042.20170510
Freitas, F. M. & Pilling, S. (2022). Laboratory investigation of electron bombardment of methanol ice and its implication on astrophysical environments. Revista Univap, (no prelo).
Grundy, W. M., Binzel, R. P., Buratti, B. J., Cook, J. C., Cruikshank, D. P., Dalle Ore, C. M., Earle, A. M., Ennico, K., Howett, C. J. A., Lunsford, A. W., Olkin, C. B., Parker, A. H., Philippe, S., Protopapa, S., Quirico, E., Reuter, D. C., Schmitt, B., Singer, K. N., Verbiscer, A. J. ... & Parker, J. Wm. (2016). Surface compositions across Pluto and Charon. Science, 351(6279), aad9189.
Gueymard, C. A. (2004). The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar energy, 76(4), 423-453.
Hudson, R. L.& Moore, M. H. (2018). Interstellar ices and radiation-induced oxidations of alcohols. The Astrophysical Journal, 857(2), 89.
Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid-and far-infrared spectroscopy of ices-Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 86, 713-870.
Mehringer, D. M. et al. (1997). Detection and confirmation of interstellar acetic acid. The Astrophysical Journal, 480(1), L71.
Millar, T. J., Macdonald, G. H., & Habing, R. J. (1995). The detection of hot ethanol in G34. 3+ 0.15. Monthly Notices of the Royal Astronomical Society, 273(1), 25-29.
Owen, T. C., Roush, T. L., Cruikshank, D. P., Elliot, J. L., Young, L. A., De Bergh, C., Schmitt, B., Geballe, T. R., Brown, R. H. & Bartholomew, M. J. (1993). Surface ices and the atmospheric composition of Pluto. Science, 261(5122), 745-748.
Pearson, J., Sastry, K., Herbst, E., & De Lucia, F. (1997). Gauche Ethyl Alcohol: Laboratory Assignments and Interstellar Identification. The Astrophysical Journal, 480(1), 420-431..
Pilling, S., Duarte, E. S., Da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P. (2010). Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments. Astronomy & Astrophysics, 509, A87. https://doi.org/10.1051/0004-6361/200912274
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2010). Radiolysis of H2O: CO2 ices by heavy energetic cosmic ray analogs. Astronomy & Astrophysics, 523, A77.
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2011). Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature. Physical Chemistry Chemical Physics, 13(35), 15755-15765.
Pilling, S. & Bergantini, A. (2015). The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects.The Astrophysical Journal, 811(2), 151.
Pilling, S., Rocha, W. R. M., Freitas, F. M., & Da Silva, P. A. (2019). Photochemistry and desorption induced by X-rays in water rich astrophysical ice analogs: implications for the moon Enceladus and other frozen space environments. RSC advances, 9(49), 28823-28840.
Pilling, S., Carvalho, G. A., & Rocha, W. R. (2022). Chemical Evolution of CO2 Ices under Processing by Ionizing Radiation: Characterization of Nonobserved Species and Chemical Equilibrium Phase with the Employment of PROCODA Code. The Astrophysical Journal, 925(2), 147.
Portugal, W., Pilling, S., Boduch, P., Rothard, H., & Andrade, D. P. (2014). Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form. Monthly Notices of the Royal Astronomical Society, 441(4), 3209-3225.
Quataert, E. (2002). A thermal bremsstrahlung model for the quiescent X-ray emission from Sagittarius A. The Astrophysical Journal, 575(2), 855.
Rachid, M. G., Faquine, K., & Pilling, S. (2017). Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium. Planetary and Space Science, 149, 83-93.
Requena-Torres, M. A., Martín-Pintado, J., Rodríguez-Franco, A., Martín, S., Rodríguez-Fernández, N. J., & De Vicente, P. (2006). Organic molecules in the Galactic center-Hot core chemistry without hot cores. Astronomy & Astrophysics, 455(3), 971-985.
Schriver, A., Schriver-Mazzuoli, L., Ehrenfreund, P., & d’Hendecourt, L. (2007). One possible origin of ethanol in interstellar medium: Photochemistry of mixed CO2–C2H6 films at 11 K. A FTIR study. Chemical physics, 334(1-3), 128-137.
van Scheltinga, J. T., Ligterink, N. F. W., Boogert, A. C. A., Van Dishoeck, E. F., & Linnartz, H. (2018). Infrared spectra of complex organic molecules in astronomically relevant ice matrices-I. Acetaldehyde, ethanol, and dimethyl ether. Astronomy & Astrophysics, 611, A35.
Vasconcelos, F. D. A., Pilling, S., Rocha, W. R., Rothard, H., & Boduch, P. (2017). Energetic processing of N2: CH4 ices employing X-Rays and swift ions: implications for icy bodies in the outer solar system. The Astrophysical Journal, 850(2), 174.
Zuckerman, B., Turner, B. E., Johnson, D. R., Clark, F. O., Lovas, F. J., Fourikis, N. , Palmer, P., Morris, M., Lilley, A. E., Ball, J. A., Gottlieb, C. A., Litvak, M. M. & Penfield, H. (1975). Detection of interstellar trans-ethyl alcohol. The Astrophysical Journal, 196, L99-L102.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode