CARACTERIZAÇÃO ESTRUTURAL DOS REVESTIMENTOS DE CARBONETO DE TUNGSTÉNIO (WC) DEPOSITADOS EM AÇO 4340 POR IRRADIAÇÃO LASER DE CO2
STRUCTURAL CHARACTERIZATION OF TUNGSTEN CARBIDE (WC) COATINGS DEPOSITED ON 4340 STEELS BY CO2 LASER IRRADIATION
DOI:
https://doi.org/10.18066/revistaunivap.v30i67.4451
Resumo
A utilização de revestimentos que imbuem elevada dureza a ferramentas industriais, torna-se uma estratégia de gestão de custos de manutenção. Considerando a capacidade de revestimento para aumentar a vida útil das peças, especialmente as ferramentas de corte e as que estão sujeitas a elevados graus de tensão de variação física e térmica. Consequentemente, nos últimos anos, a pesquisa e desenvolvimento de revestimentos industriais tem crescido, visando a aplicação de revestimentos com elevada dureza para ferramentas de corte com matrizes bem misturadas para formar compósitos. Neste sentido, os revestimentos de carboneto de tungsténio (WC) são um dos mais utilizados em sistemas de geração de energia, indústria aeroespacial, automóvel e de transportes devido às suas propriedades, que combinam alta dureza e resistência ao desgaste. O presente trabalho objetivou verificara investigação da melhoria das propriedades mecânicas do aço AISI 4340 através da deposição de revestimento de WC pulverizado por pistola pneumática e subsequente irradiação laser de CO2. As amostras foram caracterizadas por microscópio electrónico de varredura, microscópio óptico e teste de micro indentação (medições de micro dureza e de módulo de elasticidade). Os resultados mostram que é possível obter revestimentos com elevada dureza, sem poros e ligados metalurgicamente ao substrato.
Downloads
Não há dados estatísticos.
Referências
Abioye, T. E. (2014). Laser Deposition of Inconel 625/Tungsten Carbide Composite Coatings by Powder and Wire Feedstock. 2014. 324 f. [Thesis Doctoral on Philosophy], Mechanical, Materials and Manufacturing Engineering, University of Nottingham.
Almeida, D. S. (2005). Study of ceramic coatings on metallic substrate, obtained by physical deposition of electron beam vapors for application as thermal barrier. [Thesis Doctoral on Engineering and Technology Space], Materials Engineering, National Institute for Space Research.
Amancio, D. A. (2018). Production and characterization of hard metal - tungsten carbide (WC) with addition of stainless steel AISI 316l as cobalt substitute. [Thesis Doctoral in Design and Manufacturing], Institute of Mechanical Engineering, Federal University of Itajubá.
Bobzin, K., Kalscheuer, C., & Hassanzadegan Aghdam, P. (2022). Impact resistance and properties of (Cr, Al, Si) N coatings deposited by gas flow sputtering with pulsed DC supply. Advanced Engineering Materials, 24(4), 2101021. doi: https://doi.org/10.1002/adem.202101021
Callister Jr., W. D., & Rethwisch, D. G. (2010). Materials Science and Engineering an Introduction (8.ed.). Willey.
Cardoso, A. S. M. (2011). Mechanical and microstructural characterization of SAE 4340 and 300M steels after laser beam welding and plasma nitriding. [Thesis Master of Science], Lorena Faculty of Engineering, University of São Paulo.
Cinca, N., Lavigne, O., Koivuluoto, H., Dosta, S., Conze, S., Hoehn, S., Drehmann, R., Kim, C., Matikainen, V., Silva, F. S., Jafari, R., Tarrés, E., & Benedetti, A. V. (2022). Characterization of the microstructure, mechanical properties and corrosion behaviour of submicron WC-12Co coatings produced by CGS and HVAF compared with sintered bulk material. In International thermal spray conference (pp. 750-755). DVS Media GmbH.
Fan, S., Kuang, T., Xu, W., Zhang, Y., Su, Y., Lin, S., Wang, D., Yang, H., Zhou, K., Dai, M., & Wang, L. Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method. International Journal of Refractory Metals and Hard Materials, 101(105687), 2021. doi: https://doi.org/10.1016/j.ijrmhm.2021.105687
Ferreira, C. D. B., Modenesi, P. J., & Santos, D. B. (2015). Influence of abnormal austenite grain grain growth in quenched ABNT 5135 steel. Tecnologia em Metalurgia, Materiais e Mineracao, 12(1), 50-57. doi: http://dx.doi.org/10.4322/2176-1523.0682
Galvão, N. K. A. M., Vasconcelos, G., Santos, M. V. R., Campos, T. M. B., Pessoa, R. S., Guerino, M., Djouadi, M. A., & Maciel, H. S. (2016). Growth and Characterization of Graphene on Polycrystalline SiC Substrate Using Heating by CO2 Laser Beam. Materials Research, 19(6), 1329-1334. doi: http://dx.doi.org/10.1590/1980-5373-MR-2016-0296
Jardim, V. R. (2020). Characterization of tungsten carbide coatings deposited by laser fusion on titanium alloy Ti-6Al-4V. [Thesis Master on Physics and Applied Mathematics], Physics Department, Aeronautical Technological Institute.
Krishna, B. V., Misra, V. N., Mukherjee, P. S., & Sharma, P. (2002). Microstructure and properties of flame sprayed tungsten carbide coatings. International Journal of Refractory Metals and Hard Materials, 20(5-6), 355-374.
Lee, J., Jang, J., Joo, B., Son, Y., & Moon, Y. (2009). Laser surface hardening of AISI H13 tool steel. Transactions of Nonferrous Metals Society of China, 19(4), 917-920. doi: https://doi.org/10.1016/S1003-6326(08)60377-5
Maillet, H., (1987). The laser: Principles and techniques of application (2 ed.). Monole.
Oliveira, D. A. L., Corat, E. J., Trava-Airoldi, V. J., Lobo, A. O., & Marciano, F. R. (2012). Influence of the silicon interlayer on diamond-like carbon films deposited on glass substrates. Revista Univap, 18(31), 112-121.
Padilha, A. F. (2000). Engineering Materials: Microstructure and Properties. Hemus.
Pinedo, C. E., & Magnabosco, R. (2015). On the mechanisms of plasma nitriding of martensitic stainless steel AISI 420 at low and high temperature. Tecnologia em Metalurgia, Materiais e Mineracao, 12(3), 257-264. doi: http://dx.doi.org/10.4322/2176-1523.0844
Pita, R. S. P., & Silva, S. A. (2017). Characterization of CO2 laser irradiated tungsten carbide (WC) coating on 4340 steel. Report to Institutional Program of Scientific and Technological Initiation of Institute for Advanced Studies Final Report: CGPIBICTI-EFO-2017. Institute for Advanced Studies. doi: http://dx.doi.org/10.13140/RG.2.2.24558.38722
Reis, J. L. (2014). Surface thermal treatment of steel by CO2 laser. [Thesis Master on Mechanics], Mechanics Engineering, Technological Institute of Aeronautics.
Silva, C. M., Cunha, T. V., & Mikowski, A. (2017). Mechanical and microstructural analysis of welds produced by submerged arc welding with ultrasonic pulse current. Revista Matéria, 22(4). doi: http://dx.doi.org/10.1590/S1517-707620170004.0230
Silva, S. A., Volú, R. M., Dyer, P. P. O. L., Oliveira, A. C. C., & Vasconcelos, G. (2019). Study of the metallurgical bond between 316 steel substrates and NiCrAlY coating sprayed by HVOF and irradiated with a low power CO2 laser. Revista Matéria, 24(3). doi: https://doi.org/10.1590/S1517-707620190003.0782
Silva, V. C., & Paredes, R. S. C. (2016). Evaluation of the Creq./Nieq. ratio for the heat-sprayed AF2209 coating deposited by thermal spray with and without preheating. Revista Matéria, 21(2), 470-481. doi: http://dx.doi.org/10.1590/S1517-707620160002.0044
Suresh, R. S., Basavarajappa, S., & Samuel, G.L. (2012). Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 45(7), 1872–1884 2012. doi: http://dx.doi.org/10.1016/j.measurement.2012.03.024
Teleginski, V., Santos, J. C. G., Chagas, D. C., Azevedo, J. F., Costa Oliveira, A. C., & de Vasconcelos, G. (2016, October). Parameters Evaluation of Bond-Coat Deposited by CO2 Laser Beam for Aeronautical Turbine Blades. In Materials Science Forum (Vol. 869, pp. 685-688). Trans Tech Publications Ltd. doi: https://doi.org/10.4028/www.scientific.net/MSF.869.685
Vasconcelos, G., Silva, S. A., Yamin, L. S., & Ribeiro, V. (2017). CO2 laser beam covering with WC and graphite on 4340 steel. In Anais do VI Simpósio de Ciência, Tecnologia e Inovação do IEAV. https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/047/49047019.pdf
Vasconcelos, G.; Chagas, D. C. & Dias, A. N. (2012). Covering with Carbon Black and Thermal Treatment by CO2 Laser Surfaces of AISI 4340 Steel. In Dan C. Dumitras (Ed.). CO2 Laser: Optimisation and Application (pp.275-282). InTech. doi: https://doi.org/10.4028/www.scientific.net/MSF.727-728.340
Vieira Jr, L. E., Rodrigues Neto, J. B., Klein, A. N., Hotza, D., & Moreno, R. (2016). Production and characterization of an Fe-Ni alloy obtained by aqueous colloidal processing and solid state reaction. Revista Matéria, 21(4), 921-929. doi: http://dx.doi.org/10.1590/S1517-707620160004.0085
Xu, R.-G., Chen, Z., Chen, P., & Peng, G. (2022). Special Issue: Mechanical Properties of Advanced Multifunctional Coatings. Coatings, 12(5), 599. doi: https://doi.org/10.3390/coatings12050599
Ybarra, L. A. C., Molisani, A. L., Rodrigues, D., & Yoshimura, H. N. (2008). Effects of the characteristics of the industrial tungsten and tungsten carbide powders on the microstructure and hard metal hardness for rock drilling tools. Revista Eletrônica de Materiais e Processos, 3(2), 10-25. http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/viewFile/74/93
Downloads
Publicado
2024-06-26
Como Citar
Silva, S. A., Ribeiro Jardim, V., Paiva Oliveira Leite Dyer, P., & de Vasconcelos, G. (2024). CARACTERIZAÇÃO ESTRUTURAL DOS REVESTIMENTOS DE CARBONETO DE TUNGSTÉNIO (WC) DEPOSITADOS EM AÇO 4340 POR IRRADIAÇÃO LASER DE CO2. Revista Univap, 30(67). https://doi.org/10.18066/revistaunivap.v30i67.4451
Edição
Seção
Ciências Exatas e da Terra
Licença
Copyright (c) 2024 Revista Univap
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esse trabalho está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v30i67.4451Resumo
A utilização de revestimentos que imbuem elevada dureza a ferramentas industriais, torna-se uma estratégia de gestão de custos de manutenção. Considerando a capacidade de revestimento para aumentar a vida útil das peças, especialmente as ferramentas de corte e as que estão sujeitas a elevados graus de tensão de variação física e térmica. Consequentemente, nos últimos anos, a pesquisa e desenvolvimento de revestimentos industriais tem crescido, visando a aplicação de revestimentos com elevada dureza para ferramentas de corte com matrizes bem misturadas para formar compósitos. Neste sentido, os revestimentos de carboneto de tungsténio (WC) são um dos mais utilizados em sistemas de geração de energia, indústria aeroespacial, automóvel e de transportes devido às suas propriedades, que combinam alta dureza e resistência ao desgaste. O presente trabalho objetivou verificara investigação da melhoria das propriedades mecânicas do aço AISI 4340 através da deposição de revestimento de WC pulverizado por pistola pneumática e subsequente irradiação laser de CO2. As amostras foram caracterizadas por microscópio electrónico de varredura, microscópio óptico e teste de micro indentação (medições de micro dureza e de módulo de elasticidade). Os resultados mostram que é possível obter revestimentos com elevada dureza, sem poros e ligados metalurgicamente ao substrato.
Downloads
Referências
Abioye, T. E. (2014). Laser Deposition of Inconel 625/Tungsten Carbide Composite Coatings by Powder and Wire Feedstock. 2014. 324 f. [Thesis Doctoral on Philosophy], Mechanical, Materials and Manufacturing Engineering, University of Nottingham.
Almeida, D. S. (2005). Study of ceramic coatings on metallic substrate, obtained by physical deposition of electron beam vapors for application as thermal barrier. [Thesis Doctoral on Engineering and Technology Space], Materials Engineering, National Institute for Space Research.
Amancio, D. A. (2018). Production and characterization of hard metal - tungsten carbide (WC) with addition of stainless steel AISI 316l as cobalt substitute. [Thesis Doctoral in Design and Manufacturing], Institute of Mechanical Engineering, Federal University of Itajubá.
Bobzin, K., Kalscheuer, C., & Hassanzadegan Aghdam, P. (2022). Impact resistance and properties of (Cr, Al, Si) N coatings deposited by gas flow sputtering with pulsed DC supply. Advanced Engineering Materials, 24(4), 2101021. doi: https://doi.org/10.1002/adem.202101021
Callister Jr., W. D., & Rethwisch, D. G. (2010). Materials Science and Engineering an Introduction (8.ed.). Willey.
Cardoso, A. S. M. (2011). Mechanical and microstructural characterization of SAE 4340 and 300M steels after laser beam welding and plasma nitriding. [Thesis Master of Science], Lorena Faculty of Engineering, University of São Paulo.
Cinca, N., Lavigne, O., Koivuluoto, H., Dosta, S., Conze, S., Hoehn, S., Drehmann, R., Kim, C., Matikainen, V., Silva, F. S., Jafari, R., Tarrés, E., & Benedetti, A. V. (2022). Characterization of the microstructure, mechanical properties and corrosion behaviour of submicron WC-12Co coatings produced by CGS and HVAF compared with sintered bulk material. In International thermal spray conference (pp. 750-755). DVS Media GmbH.
Fan, S., Kuang, T., Xu, W., Zhang, Y., Su, Y., Lin, S., Wang, D., Yang, H., Zhou, K., Dai, M., & Wang, L. Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method. International Journal of Refractory Metals and Hard Materials, 101(105687), 2021. doi: https://doi.org/10.1016/j.ijrmhm.2021.105687
Ferreira, C. D. B., Modenesi, P. J., & Santos, D. B. (2015). Influence of abnormal austenite grain grain growth in quenched ABNT 5135 steel. Tecnologia em Metalurgia, Materiais e Mineracao, 12(1), 50-57. doi: http://dx.doi.org/10.4322/2176-1523.0682
Galvão, N. K. A. M., Vasconcelos, G., Santos, M. V. R., Campos, T. M. B., Pessoa, R. S., Guerino, M., Djouadi, M. A., & Maciel, H. S. (2016). Growth and Characterization of Graphene on Polycrystalline SiC Substrate Using Heating by CO2 Laser Beam. Materials Research, 19(6), 1329-1334. doi: http://dx.doi.org/10.1590/1980-5373-MR-2016-0296
Jardim, V. R. (2020). Characterization of tungsten carbide coatings deposited by laser fusion on titanium alloy Ti-6Al-4V. [Thesis Master on Physics and Applied Mathematics], Physics Department, Aeronautical Technological Institute.
Krishna, B. V., Misra, V. N., Mukherjee, P. S., & Sharma, P. (2002). Microstructure and properties of flame sprayed tungsten carbide coatings. International Journal of Refractory Metals and Hard Materials, 20(5-6), 355-374.
Lee, J., Jang, J., Joo, B., Son, Y., & Moon, Y. (2009). Laser surface hardening of AISI H13 tool steel. Transactions of Nonferrous Metals Society of China, 19(4), 917-920. doi: https://doi.org/10.1016/S1003-6326(08)60377-5
Maillet, H., (1987). The laser: Principles and techniques of application (2 ed.). Monole.
Oliveira, D. A. L., Corat, E. J., Trava-Airoldi, V. J., Lobo, A. O., & Marciano, F. R. (2012). Influence of the silicon interlayer on diamond-like carbon films deposited on glass substrates. Revista Univap, 18(31), 112-121.
Padilha, A. F. (2000). Engineering Materials: Microstructure and Properties. Hemus.
Pinedo, C. E., & Magnabosco, R. (2015). On the mechanisms of plasma nitriding of martensitic stainless steel AISI 420 at low and high temperature. Tecnologia em Metalurgia, Materiais e Mineracao, 12(3), 257-264. doi: http://dx.doi.org/10.4322/2176-1523.0844
Pita, R. S. P., & Silva, S. A. (2017). Characterization of CO2 laser irradiated tungsten carbide (WC) coating on 4340 steel. Report to Institutional Program of Scientific and Technological Initiation of Institute for Advanced Studies Final Report: CGPIBICTI-EFO-2017. Institute for Advanced Studies. doi: http://dx.doi.org/10.13140/RG.2.2.24558.38722
Reis, J. L. (2014). Surface thermal treatment of steel by CO2 laser. [Thesis Master on Mechanics], Mechanics Engineering, Technological Institute of Aeronautics.
Silva, C. M., Cunha, T. V., & Mikowski, A. (2017). Mechanical and microstructural analysis of welds produced by submerged arc welding with ultrasonic pulse current. Revista Matéria, 22(4). doi: http://dx.doi.org/10.1590/S1517-707620170004.0230
Silva, S. A., Volú, R. M., Dyer, P. P. O. L., Oliveira, A. C. C., & Vasconcelos, G. (2019). Study of the metallurgical bond between 316 steel substrates and NiCrAlY coating sprayed by HVOF and irradiated with a low power CO2 laser. Revista Matéria, 24(3). doi: https://doi.org/10.1590/S1517-707620190003.0782
Silva, V. C., & Paredes, R. S. C. (2016). Evaluation of the Creq./Nieq. ratio for the heat-sprayed AF2209 coating deposited by thermal spray with and without preheating. Revista Matéria, 21(2), 470-481. doi: http://dx.doi.org/10.1590/S1517-707620160002.0044
Suresh, R. S., Basavarajappa, S., & Samuel, G.L. (2012). Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 45(7), 1872–1884 2012. doi: http://dx.doi.org/10.1016/j.measurement.2012.03.024
Teleginski, V., Santos, J. C. G., Chagas, D. C., Azevedo, J. F., Costa Oliveira, A. C., & de Vasconcelos, G. (2016, October). Parameters Evaluation of Bond-Coat Deposited by CO2 Laser Beam for Aeronautical Turbine Blades. In Materials Science Forum (Vol. 869, pp. 685-688). Trans Tech Publications Ltd. doi: https://doi.org/10.4028/www.scientific.net/MSF.869.685
Vasconcelos, G., Silva, S. A., Yamin, L. S., & Ribeiro, V. (2017). CO2 laser beam covering with WC and graphite on 4340 steel. In Anais do VI Simpósio de Ciência, Tecnologia e Inovação do IEAV. https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/047/49047019.pdf
Vasconcelos, G.; Chagas, D. C. & Dias, A. N. (2012). Covering with Carbon Black and Thermal Treatment by CO2 Laser Surfaces of AISI 4340 Steel. In Dan C. Dumitras (Ed.). CO2 Laser: Optimisation and Application (pp.275-282). InTech. doi: https://doi.org/10.4028/www.scientific.net/MSF.727-728.340
Vieira Jr, L. E., Rodrigues Neto, J. B., Klein, A. N., Hotza, D., & Moreno, R. (2016). Production and characterization of an Fe-Ni alloy obtained by aqueous colloidal processing and solid state reaction. Revista Matéria, 21(4), 921-929. doi: http://dx.doi.org/10.1590/S1517-707620160004.0085
Xu, R.-G., Chen, Z., Chen, P., & Peng, G. (2022). Special Issue: Mechanical Properties of Advanced Multifunctional Coatings. Coatings, 12(5), 599. doi: https://doi.org/10.3390/coatings12050599
Ybarra, L. A. C., Molisani, A. L., Rodrigues, D., & Yoshimura, H. N. (2008). Effects of the characteristics of the industrial tungsten and tungsten carbide powders on the microstructure and hard metal hardness for rock drilling tools. Revista Eletrônica de Materiais e Processos, 3(2), 10-25. http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/viewFile/74/93
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Univap
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esse trabalho está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
http://creativecommons.org/licenses/by/4.0/legalcode