CARACTERIZAÇÃO ESTRUTURAL DOS REVESTIMENTOS DE CARBONETO DE TUNGSTÉNIO (WC) DEPOSITADOS EM AÇO 4340 POR IRRADIAÇÃO LASER DE CO2
STRUCTURAL CHARACTERIZATION OF TUNGSTEN CARBIDE (WC) COATINGS DEPOSITED ON 4340 STEELS BY CO2 LASER IRRADIATION
DOI:
https://doi.org/10.18066/revistaunivap.v30i67.4451
Abstract
The use of coatings that imbue high hardness to industrial tools, becomes a maintenance cost management strategy. Considering the coating capacity to increase the part lifespan, especially the cutting tools and those that are subjected to high degrees of physical and thermal variation stress. Consequently, in recent years the research and development of industrial coatings has grown, aiming the application of coatings with high hardness for cutting tools with metal matrices to form composites. In this sense, tungsten Carbide (WC) coatings are one of the most used in power generation systems, aerospace, automotive and transportation industry due to their properties, which combine high hardness and wear resistance. The present work aims to verify the improvement in mechanical properties of the AISI 4340 steel through the deposition of WC coating sprayed by pneumatic gun and subsequent CO2 laser irradiation. The specimens were characterized by scanning electron microscope, optical microscope and micro-indentation test (microhardness and elasticity modulus measurements). The results show that it is possible to obtain coatings with high hardness, without pores and metallurgically bound to the substrate
Downloads
Download data is not yet available.
References
Abioye, T. E. (2014). Laser Deposition of Inconel 625/Tungsten Carbide Composite Coatings by Powder and Wire Feedstock. 2014. 324 f. [Thesis Doctoral on Philosophy], Mechanical, Materials and Manufacturing Engineering, University of Nottingham.
Almeida, D. S. (2005). Study of ceramic coatings on metallic substrate, obtained by physical deposition of electron beam vapors for application as thermal barrier. [Thesis Doctoral on Engineering and Technology Space], Materials Engineering, National Institute for Space Research.
Amancio, D. A. (2018). Production and characterization of hard metal - tungsten carbide (WC) with addition of stainless steel AISI 316l as cobalt substitute. [Thesis Doctoral in Design and Manufacturing], Institute of Mechanical Engineering, Federal University of Itajubá.
Bobzin, K., Kalscheuer, C., & Hassanzadegan Aghdam, P. (2022). Impact resistance and properties of (Cr, Al, Si) N coatings deposited by gas flow sputtering with pulsed DC supply. Advanced Engineering Materials, 24(4), 2101021. doi: https://doi.org/10.1002/adem.202101021
Callister Jr., W. D., & Rethwisch, D. G. (2010). Materials Science and Engineering an Introduction (8.ed.). Willey.
Cardoso, A. S. M. (2011). Mechanical and microstructural characterization of SAE 4340 and 300M steels after laser beam welding and plasma nitriding. [Thesis Master of Science], Lorena Faculty of Engineering, University of São Paulo.
Cinca, N., Lavigne, O., Koivuluoto, H., Dosta, S., Conze, S., Hoehn, S., Drehmann, R., Kim, C., Matikainen, V., Silva, F. S., Jafari, R., Tarrés, E., & Benedetti, A. V. (2022). Characterization of the microstructure, mechanical properties and corrosion behaviour of submicron WC-12Co coatings produced by CGS and HVAF compared with sintered bulk material. In International thermal spray conference (pp. 750-755). DVS Media GmbH.
Fan, S., Kuang, T., Xu, W., Zhang, Y., Su, Y., Lin, S., Wang, D., Yang, H., Zhou, K., Dai, M., & Wang, L. Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method. International Journal of Refractory Metals and Hard Materials, 101(105687), 2021. doi: https://doi.org/10.1016/j.ijrmhm.2021.105687
Ferreira, C. D. B., Modenesi, P. J., & Santos, D. B. (2015). Influence of abnormal austenite grain grain growth in quenched ABNT 5135 steel. Tecnologia em Metalurgia, Materiais e Mineracao, 12(1), 50-57. doi: http://dx.doi.org/10.4322/2176-1523.0682
Galvão, N. K. A. M., Vasconcelos, G., Santos, M. V. R., Campos, T. M. B., Pessoa, R. S., Guerino, M., Djouadi, M. A., & Maciel, H. S. (2016). Growth and Characterization of Graphene on Polycrystalline SiC Substrate Using Heating by CO2 Laser Beam. Materials Research, 19(6), 1329-1334. doi: http://dx.doi.org/10.1590/1980-5373-MR-2016-0296
Jardim, V. R. (2020). Characterization of tungsten carbide coatings deposited by laser fusion on titanium alloy Ti-6Al-4V. [Thesis Master on Physics and Applied Mathematics], Physics Department, Aeronautical Technological Institute.
Krishna, B. V., Misra, V. N., Mukherjee, P. S., & Sharma, P. (2002). Microstructure and properties of flame sprayed tungsten carbide coatings. International Journal of Refractory Metals and Hard Materials, 20(5-6), 355-374.
Lee, J., Jang, J., Joo, B., Son, Y., & Moon, Y. (2009). Laser surface hardening of AISI H13 tool steel. Transactions of Nonferrous Metals Society of China, 19(4), 917-920. doi: https://doi.org/10.1016/S1003-6326(08)60377-5
Maillet, H., (1987). The laser: Principles and techniques of application (2 ed.). Monole.
Oliveira, D. A. L., Corat, E. J., Trava-Airoldi, V. J., Lobo, A. O., & Marciano, F. R. (2012). Influence of the silicon interlayer on diamond-like carbon films deposited on glass substrates. Revista Univap, 18(31), 112-121.
Padilha, A. F. (2000). Engineering Materials: Microstructure and Properties. Hemus.
Pinedo, C. E., & Magnabosco, R. (2015). On the mechanisms of plasma nitriding of martensitic stainless steel AISI 420 at low and high temperature. Tecnologia em Metalurgia, Materiais e Mineracao, 12(3), 257-264. doi: http://dx.doi.org/10.4322/2176-1523.0844
Pita, R. S. P., & Silva, S. A. (2017). Characterization of CO2 laser irradiated tungsten carbide (WC) coating on 4340 steel. Report to Institutional Program of Scientific and Technological Initiation of Institute for Advanced Studies Final Report: CGPIBICTI-EFO-2017. Institute for Advanced Studies. doi: http://dx.doi.org/10.13140/RG.2.2.24558.38722
Reis, J. L. (2014). Surface thermal treatment of steel by CO2 laser. [Thesis Master on Mechanics], Mechanics Engineering, Technological Institute of Aeronautics.
Silva, C. M., Cunha, T. V., & Mikowski, A. (2017). Mechanical and microstructural analysis of welds produced by submerged arc welding with ultrasonic pulse current. Revista Matéria, 22(4). doi: http://dx.doi.org/10.1590/S1517-707620170004.0230
Silva, S. A., Volú, R. M., Dyer, P. P. O. L., Oliveira, A. C. C., & Vasconcelos, G. (2019). Study of the metallurgical bond between 316 steel substrates and NiCrAlY coating sprayed by HVOF and irradiated with a low power CO2 laser. Revista Matéria, 24(3). doi: https://doi.org/10.1590/S1517-707620190003.0782
Silva, V. C., & Paredes, R. S. C. (2016). Evaluation of the Creq./Nieq. ratio for the heat-sprayed AF2209 coating deposited by thermal spray with and without preheating. Revista Matéria, 21(2), 470-481. doi: http://dx.doi.org/10.1590/S1517-707620160002.0044
Suresh, R. S., Basavarajappa, S., & Samuel, G.L. (2012). Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 45(7), 1872–1884 2012. doi: http://dx.doi.org/10.1016/j.measurement.2012.03.024
Teleginski, V., Santos, J. C. G., Chagas, D. C., Azevedo, J. F., Costa Oliveira, A. C., & de Vasconcelos, G. (2016, October). Parameters Evaluation of Bond-Coat Deposited by CO2 Laser Beam for Aeronautical Turbine Blades. In Materials Science Forum (Vol. 869, pp. 685-688). Trans Tech Publications Ltd. doi: https://doi.org/10.4028/www.scientific.net/MSF.869.685
Vasconcelos, G., Silva, S. A., Yamin, L. S., & Ribeiro, V. (2017). CO2 laser beam covering with WC and graphite on 4340 steel. In Anais do VI Simpósio de Ciência, Tecnologia e Inovação do IEAV. https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/047/49047019.pdf
Vasconcelos, G.; Chagas, D. C. & Dias, A. N. (2012). Covering with Carbon Black and Thermal Treatment by CO2 Laser Surfaces of AISI 4340 Steel. In Dan C. Dumitras (Ed.). CO2 Laser: Optimisation and Application (pp.275-282). InTech. doi: https://doi.org/10.4028/www.scientific.net/MSF.727-728.340
Vieira Jr, L. E., Rodrigues Neto, J. B., Klein, A. N., Hotza, D., & Moreno, R. (2016). Production and characterization of an Fe-Ni alloy obtained by aqueous colloidal processing and solid state reaction. Revista Matéria, 21(4), 921-929. doi: http://dx.doi.org/10.1590/S1517-707620160004.0085
Xu, R.-G., Chen, Z., Chen, P., & Peng, G. (2022). Special Issue: Mechanical Properties of Advanced Multifunctional Coatings. Coatings, 12(5), 599. doi: https://doi.org/10.3390/coatings12050599
Ybarra, L. A. C., Molisani, A. L., Rodrigues, D., & Yoshimura, H. N. (2008). Effects of the characteristics of the industrial tungsten and tungsten carbide powders on the microstructure and hard metal hardness for rock drilling tools. Revista Eletrônica de Materiais e Processos, 3(2), 10-25. http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/viewFile/74/93
Downloads
Published
2024-06-26
How to Cite
Silva, S. A., Ribeiro Jardim, V., Paiva Oliveira Leite Dyer, P., & de Vasconcelos, G. (2024). STRUCTURAL CHARACTERIZATION OF TUNGSTEN CARBIDE (WC) COATINGS DEPOSITED ON 4340 STEELS BY CO2 LASER IRRADIATION. Revista Univap, 30(67). https://doi.org/10.18066/revistaunivap.v30i67.4451
Issue
Section
Ciências Exatas e da Terra
License
Copyright (c) 2024 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v30i67.4451Abstract
The use of coatings that imbue high hardness to industrial tools, becomes a maintenance cost management strategy. Considering the coating capacity to increase the part lifespan, especially the cutting tools and those that are subjected to high degrees of physical and thermal variation stress. Consequently, in recent years the research and development of industrial coatings has grown, aiming the application of coatings with high hardness for cutting tools with metal matrices to form composites. In this sense, tungsten Carbide (WC) coatings are one of the most used in power generation systems, aerospace, automotive and transportation industry due to their properties, which combine high hardness and wear resistance. The present work aims to verify the improvement in mechanical properties of the AISI 4340 steel through the deposition of WC coating sprayed by pneumatic gun and subsequent CO2 laser irradiation. The specimens were characterized by scanning electron microscope, optical microscope and micro-indentation test (microhardness and elasticity modulus measurements). The results show that it is possible to obtain coatings with high hardness, without pores and metallurgically bound to the substrate
Downloads
References
Abioye, T. E. (2014). Laser Deposition of Inconel 625/Tungsten Carbide Composite Coatings by Powder and Wire Feedstock. 2014. 324 f. [Thesis Doctoral on Philosophy], Mechanical, Materials and Manufacturing Engineering, University of Nottingham.
Almeida, D. S. (2005). Study of ceramic coatings on metallic substrate, obtained by physical deposition of electron beam vapors for application as thermal barrier. [Thesis Doctoral on Engineering and Technology Space], Materials Engineering, National Institute for Space Research.
Amancio, D. A. (2018). Production and characterization of hard metal - tungsten carbide (WC) with addition of stainless steel AISI 316l as cobalt substitute. [Thesis Doctoral in Design and Manufacturing], Institute of Mechanical Engineering, Federal University of Itajubá.
Bobzin, K., Kalscheuer, C., & Hassanzadegan Aghdam, P. (2022). Impact resistance and properties of (Cr, Al, Si) N coatings deposited by gas flow sputtering with pulsed DC supply. Advanced Engineering Materials, 24(4), 2101021. doi: https://doi.org/10.1002/adem.202101021
Callister Jr., W. D., & Rethwisch, D. G. (2010). Materials Science and Engineering an Introduction (8.ed.). Willey.
Cardoso, A. S. M. (2011). Mechanical and microstructural characterization of SAE 4340 and 300M steels after laser beam welding and plasma nitriding. [Thesis Master of Science], Lorena Faculty of Engineering, University of São Paulo.
Cinca, N., Lavigne, O., Koivuluoto, H., Dosta, S., Conze, S., Hoehn, S., Drehmann, R., Kim, C., Matikainen, V., Silva, F. S., Jafari, R., Tarrés, E., & Benedetti, A. V. (2022). Characterization of the microstructure, mechanical properties and corrosion behaviour of submicron WC-12Co coatings produced by CGS and HVAF compared with sintered bulk material. In International thermal spray conference (pp. 750-755). DVS Media GmbH.
Fan, S., Kuang, T., Xu, W., Zhang, Y., Su, Y., Lin, S., Wang, D., Yang, H., Zhou, K., Dai, M., & Wang, L. Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method. International Journal of Refractory Metals and Hard Materials, 101(105687), 2021. doi: https://doi.org/10.1016/j.ijrmhm.2021.105687
Ferreira, C. D. B., Modenesi, P. J., & Santos, D. B. (2015). Influence of abnormal austenite grain grain growth in quenched ABNT 5135 steel. Tecnologia em Metalurgia, Materiais e Mineracao, 12(1), 50-57. doi: http://dx.doi.org/10.4322/2176-1523.0682
Galvão, N. K. A. M., Vasconcelos, G., Santos, M. V. R., Campos, T. M. B., Pessoa, R. S., Guerino, M., Djouadi, M. A., & Maciel, H. S. (2016). Growth and Characterization of Graphene on Polycrystalline SiC Substrate Using Heating by CO2 Laser Beam. Materials Research, 19(6), 1329-1334. doi: http://dx.doi.org/10.1590/1980-5373-MR-2016-0296
Jardim, V. R. (2020). Characterization of tungsten carbide coatings deposited by laser fusion on titanium alloy Ti-6Al-4V. [Thesis Master on Physics and Applied Mathematics], Physics Department, Aeronautical Technological Institute.
Krishna, B. V., Misra, V. N., Mukherjee, P. S., & Sharma, P. (2002). Microstructure and properties of flame sprayed tungsten carbide coatings. International Journal of Refractory Metals and Hard Materials, 20(5-6), 355-374.
Lee, J., Jang, J., Joo, B., Son, Y., & Moon, Y. (2009). Laser surface hardening of AISI H13 tool steel. Transactions of Nonferrous Metals Society of China, 19(4), 917-920. doi: https://doi.org/10.1016/S1003-6326(08)60377-5
Maillet, H., (1987). The laser: Principles and techniques of application (2 ed.). Monole.
Oliveira, D. A. L., Corat, E. J., Trava-Airoldi, V. J., Lobo, A. O., & Marciano, F. R. (2012). Influence of the silicon interlayer on diamond-like carbon films deposited on glass substrates. Revista Univap, 18(31), 112-121.
Padilha, A. F. (2000). Engineering Materials: Microstructure and Properties. Hemus.
Pinedo, C. E., & Magnabosco, R. (2015). On the mechanisms of plasma nitriding of martensitic stainless steel AISI 420 at low and high temperature. Tecnologia em Metalurgia, Materiais e Mineracao, 12(3), 257-264. doi: http://dx.doi.org/10.4322/2176-1523.0844
Pita, R. S. P., & Silva, S. A. (2017). Characterization of CO2 laser irradiated tungsten carbide (WC) coating on 4340 steel. Report to Institutional Program of Scientific and Technological Initiation of Institute for Advanced Studies Final Report: CGPIBICTI-EFO-2017. Institute for Advanced Studies. doi: http://dx.doi.org/10.13140/RG.2.2.24558.38722
Reis, J. L. (2014). Surface thermal treatment of steel by CO2 laser. [Thesis Master on Mechanics], Mechanics Engineering, Technological Institute of Aeronautics.
Silva, C. M., Cunha, T. V., & Mikowski, A. (2017). Mechanical and microstructural analysis of welds produced by submerged arc welding with ultrasonic pulse current. Revista Matéria, 22(4). doi: http://dx.doi.org/10.1590/S1517-707620170004.0230
Silva, S. A., Volú, R. M., Dyer, P. P. O. L., Oliveira, A. C. C., & Vasconcelos, G. (2019). Study of the metallurgical bond between 316 steel substrates and NiCrAlY coating sprayed by HVOF and irradiated with a low power CO2 laser. Revista Matéria, 24(3). doi: https://doi.org/10.1590/S1517-707620190003.0782
Silva, V. C., & Paredes, R. S. C. (2016). Evaluation of the Creq./Nieq. ratio for the heat-sprayed AF2209 coating deposited by thermal spray with and without preheating. Revista Matéria, 21(2), 470-481. doi: http://dx.doi.org/10.1590/S1517-707620160002.0044
Suresh, R. S., Basavarajappa, S., & Samuel, G.L. (2012). Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 45(7), 1872–1884 2012. doi: http://dx.doi.org/10.1016/j.measurement.2012.03.024
Teleginski, V., Santos, J. C. G., Chagas, D. C., Azevedo, J. F., Costa Oliveira, A. C., & de Vasconcelos, G. (2016, October). Parameters Evaluation of Bond-Coat Deposited by CO2 Laser Beam for Aeronautical Turbine Blades. In Materials Science Forum (Vol. 869, pp. 685-688). Trans Tech Publications Ltd. doi: https://doi.org/10.4028/www.scientific.net/MSF.869.685
Vasconcelos, G., Silva, S. A., Yamin, L. S., & Ribeiro, V. (2017). CO2 laser beam covering with WC and graphite on 4340 steel. In Anais do VI Simpósio de Ciência, Tecnologia e Inovação do IEAV. https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/047/49047019.pdf
Vasconcelos, G.; Chagas, D. C. & Dias, A. N. (2012). Covering with Carbon Black and Thermal Treatment by CO2 Laser Surfaces of AISI 4340 Steel. In Dan C. Dumitras (Ed.). CO2 Laser: Optimisation and Application (pp.275-282). InTech. doi: https://doi.org/10.4028/www.scientific.net/MSF.727-728.340
Vieira Jr, L. E., Rodrigues Neto, J. B., Klein, A. N., Hotza, D., & Moreno, R. (2016). Production and characterization of an Fe-Ni alloy obtained by aqueous colloidal processing and solid state reaction. Revista Matéria, 21(4), 921-929. doi: http://dx.doi.org/10.1590/S1517-707620160004.0085
Xu, R.-G., Chen, Z., Chen, P., & Peng, G. (2022). Special Issue: Mechanical Properties of Advanced Multifunctional Coatings. Coatings, 12(5), 599. doi: https://doi.org/10.3390/coatings12050599
Ybarra, L. A. C., Molisani, A. L., Rodrigues, D., & Yoshimura, H. N. (2008). Effects of the characteristics of the industrial tungsten and tungsten carbide powders on the microstructure and hard metal hardness for rock drilling tools. Revista Eletrônica de Materiais e Processos, 3(2), 10-25. http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/viewFile/74/93
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode