UM EXEMPLO DIDÁTICO PARA O ENSINO DA CONVOLUÇÃO DISCRETA

Arian Ojeda Gonzalez, Isabelle Cristine Pellegrini Lamin

Resumo


Este artigo descreve um método didático para o ensino da convolução discreta. Através de um exemplo apresenta-se o desenvolvimento matemático até definir a convolução discreta. Posteriormente, utilizando um segundo exemplo estuda-se um método onde os termos do argumento da soma da convolução discreta são ordenados em uma tabela. Propomos que essa tabela irá facilitar o ensino de como calcular a convolução discreta sem usar o computador. O método tabelado é generalizado e transformado numa equação matricial sendo um caso especial de matriz de Toeplitz.

Palavras-chave


Convolução discreta; Matriz de Toeplitz; sistema linear Invariante ao deslocamento (LID).

Texto completo:

PDF

Referências


ABRANTES, Sílvio A. Processamento Adaptativo de Sinais. Lisboa: Fundação Calouste Gulbenkian, 2000. 301 p.

CARVALHO, J. M.; VELOSO, L.; GURJÃO, E. C.. Análise de Sinais e Sistemas. Rio de Janeiro: Elsevier, 2015.

FIGUEIREDO, D. G. Análise de Fourier e Equações Diferenciais Parciais. 4. ed. Rio de Janeiro, RJ: Impa, 2000. 274p.

GRAY, R. M. Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory, v. 2, n. 3, 155-239, 2006.

HAYKIN, S. S.; VAN VEEN, B. Sinais e Sistemas. São Paulo: Bookman, 2001.

OPPENHEIM, A. V.; SCHAFER, R. W.; BUCK, J. R. Discrete Time Signal Processing. 2. ed. New Jersey: Prentice Hall, 1999.

PEREIRA, A. G. Séries de Fourier e aplicações. Campina Grande: Universidade Estadual da Paraíba, 2011. Disponível em: http://dspace.bc.uepb.edu.br:8080/xmlui/handle/123456789/715. Acesso em: 13 set, 2017.

SPIEGEL, Murray R. Transformadas de Laplace. São Paulo, SP: McGraw-Hill do Brasil, 1971. 344 p.

VINAY, K. et al. Digital Signal Processing using MatLab. 3. ed. Global Engineering: Christopher M. Shorttr, 2010.

WALDMAN, Helio. Processamento Digital de Sinais: conceitos fundamentais. Buenos Aires: Kapelusz, 1987. 183p.

YNOGUTI, C. A. Processamento Digital de Sinais. Campus em Santa Rita do Sapucaí: Instituto Nacional de Telecomunicações, 2017. Disponível em: http://www.inatel.br/docentes/ynoguti/graduacao-sp-2113502489/52-convolucao. Acesso em: 13 set. 2017.

ZILL, D. G. Equações Diferenciais com Aplicações em Modelagem. São Paulo, SP: Thomson, 2003. xiv 492 p.




DOI: http://dx.doi.org/10.18066/revistaunivap.v25i49.1993

Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 Revista Univap

Revista UniVap é uma publicação eletrônica (a partir da edição nº 29 passa a ser on-line) editada pela Universidade do Vale do Paraíba (UNIVAP), que tem o intuito de promover a divulgação de pesquisas e estudos, cumprindo a tríplice missão da universidade, de proporcionar ensino, pesquisa e extensão de modo indissociável. Esta publicação incentiva as pesquisas e procura o envolvimento de seus professores e alunos em pesquisas e cogitações de interesse social, educacional, científico ou tecnológico. Aceita artigos originais, não publicados anteriormente, de seus docentes, discentes, bem como de autores da comunidade científica nacional e internacional. Publica artigos, notas científicas, relatos de pesquisa, estudos teóricos, relatos de experiência profissional e resenhas.

- ACESSO ÀS NORMAS GERAIS PARA PUBLICAÇÃO DE TRABALHOS NA REVISTA UNIVAP

- FLUXOGRAMA DO PROCESSO EDITORIAL


O endereço da revista é http://revista.univap.br/index.php/revistaunivap

 

Atualmente, a Revista UNIVAP possui 9 indexadores:

O Índice de Citações da Revista UNIVAP está disponível por intermédio do Google Acadêmico <https://scholar.google.com.br/citations?user=tmYYoVwAAAAJ&hl=pt-BR>.