A ATUAÇÃO DA MEMBRANA AMNIÓTICA NA EXPRESSÃO DOS GENES CD206 E IL-12B NA FIBROSE HEPÁTICA BILIAR
DOI:
https://doi.org/10.18066/revistaunivap.v26i50.2340
Resumo
A fibrose hepática é a consequência das doenças crônicas do fígado, e quando não tratada evolui para a cirrose, cujo único tratamento efetivo é o transplante do órgão. Estudos prévios demonstraram que a membrana amniótica humana (MA), reduziu a fibrose biliar inibindo sua progressão para a cirrose hepática. Acredita-se que um dos mecanismos desta ação seja a modulação dos macrófagos M1 e M2, células que atuam na progressão e regressão da fibrose, respectivamente. O objetivo deste estudo foi analisar o efeito da MA na expressão de genes relacionados aos macrófagos M1 e M2 na fibrose hepática por meio da técnica de PCR quantitativa em tempo real (RT-qPCR). Duas semanas após a indução da fibrose pela ligadura do ducto biliar (LDB), um fragmento de MA foi aplicado ao fígado. Quatro semanas após a aplicação da MA, amostras do fígado foram submetidas a extração do RNA, síntese de cDNA e RT-qPCR. Foi observado aumento significativo da expressão dos genes CD206, e IL-12b após a aplicação da MA em relação as amostras de fígado sem a presença da mesma, sugerindo que a MA pode estimular a expressão do gene CD206, que está associado ao macrófago M2, e reparação da fibrose, mas também pode ter o potencial de estimular a expressão do gene IL-12b, associada ao macrófago M1. Estes resultados sugerem a presença de ambos os subtipos de macrófagos durante a regressão da fibrose biliar, a qual foi evidenciada previamente pelo nosso grupo de pesquisa, utilizando os mesmos grupos experimentais. Assim, estudos futuros com outros genes contribuirão para o melhor entendimento da ação antifibrótica da MA por meio do aumento de M2 no tecido hepático.
Downloads
Não há dados estatísticos.
Referências
AZZAM, H. S. et al. Natural products and chronic hepatitis C virus. Liver International, v. 27, n. 1, p. 17-25, 2007.
BISWAS, S.; SHARMA, S. Hepatic Fibrosis and its Regression: The Pursuit of Treatment. Journal of Liver Research, Disorders & Therapy, v. 2, n. 2, p. 36-39, 2016.
BOURNE, Gordon L.; BENIRSCHKE, Kurt. Absent umbilical artery: a review of 113 cases. Archives of disease in childhood, v. 35, n. 184, p. 534, 1960.
BRITO, Flaviane de Souza. Avaliação do tecido hepático sob influência da membrana amniótica humana na fibrose hepática biliar em ratos. São José dos Campos, SP, 2015. 78 f. Dissertação (Mestrado em Ciências Biológicas) - Universidade do Vale do Paraíba, São José dos Campos, 2015.
CHEN, W. Y. et al. Chromium attenuates hepatic damage in a rat model of chronic cholestasis. Life Sci., v. 84, p. 606–614, 2009.
DEHGHANI, Mehdi et al. Grafting with cryopreserved amniotic membrane versus conservative wound care in treatment of pressure ulcers: a randomized clinical trial. Bulletin of Emergency & Trauma, v. 5, n. 4, p. 249, 2017.
DOOLEY, James S. et al. Sherlock's diseases of the liver and biliary system. John Wiley & Sons, 2018.
EBRAHIMI, Hedyeh; NADERIAN, Mohammadreza; SOHRABPOUR, Amir Ali. New concepts on reversibility and targeting of liver fibrosis; a review article. Middle East journal of digestive diseases, v. 10, n. 3, p. 133, 2018.
ECKERT, Christoph et al. The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Frontiers in immunology, v. 6, p. 179, 2015.
FÉNELON, Mathilde et al. Human amniotic membrane for guided bone regeneration of calvarial defects in mice. Journal of Materials Science: Materials in Medicine, v. 29, n. 6, p. 78, 2018.
GIMENES, Fernanda Raphael Escobar et al. Nursing Assessment Tool for People With Liver Cirrhosis. Gastroenterology Nursing, v. 39, n. 4, p. 264-272, 2016.
GUILLOT, A.; TACKE, F. Liver Macrophages: Old Dogmas and New Insights Hepatology Communications, v. 3, n. 6, p. 730-743, 2019
JU, Cynthia; TACKE, Frank. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cellular & molecular immunology, v. 13, n. 3, p. 316, 2016.
KAR, I. B. et al. Repair of oral mucosal defects with cryopreserved human amniotic membrane grafts: prospective clinical study. International Journal of Oral and Maxillofacial Surgery, v. 43, n. 11, p. 1339-1344, 2014.
KOO, Sue-jie; GARG, Nisha J. Metabolic programming of macrophage functions and pathogens control. Redox Biology, v. 24, 2019.
KRENKEL, Oliver et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology, v. 67, n. 4, p. 1270-1283, 2018.
KUBO, Shoji et al. Previous or occult hepatitis B virus infection in hepatitis C virus-associated hepatocellular carcinoma without hepatic fibrosis. Digestive diseases and sciences, v. 46, n. 11, p. 2408-2414, 2001.
KUBO, S. et al. Human Amnion-Derived Mesenchymal Stem Cell Transplantation Ameliorates Liver Fibrosis in Rats. Transplantation Direct, v.1, n.4, p. 1-9, 2015.
LI, HAI et al. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets. BMJ open gastroenterology, v. 3, n. 1, p. e000079, 2016.
LI, Melissa K.; CRAWFORD, James M. The pathology of cholestasis. In: Seminars in liver disease. Copyright© by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA., 2004. p. 21-42, 2004.
LIU, Baoding. Uncertain risk analysis and uncertain reliability analysis. Journal of Uncertain Systems, v. 4, n. 3, p. 163-170, 2010.
LUO, X.Y. et al. Transplantation of bone marrow mesenchymal stromal cells attenuates liver fibrosis in mice by regulating macrophage subtypes. Stem Cell Res Ther, v. 10, n. 16, 2019.
MAMEDE, Ana Catarina et al. Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. The Journal of membrane biology, v. 247, n. 4, p. 357-360, 2014.
MAMEDE, Karina M.; SANT’ANNA, Luciana B. Antifibrotic effects of total or partial application of amniotic membrane in hepatic fibrosis. Anais da Academia Brasileira de Ciências, v. 91, n. 3, 2019.
MANUELPILLAI, Ursula et al. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLoS One, v. 7, n. 6, p. e38631, 2012.
MAYMÓ, Julieta L. et al. Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation. PloS one, v. 13, n. 1, p. e0191489, 2018.
MOSSER, David M.; EDWARDS, Justin P. Exploring the full spectrum of macrophage activation. Nature reviews immunology, v. 8, n. 12, p. 958, 2008.
MOHAMED, Hoda E. et al. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model. Experimental Biology and Medicine, v. 241, n. 6, p. 581-591, 2016.
MURPHY, S. V. et al. Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transpl, v. 21, n. 7, p. 1477-1492, 2012.
NADER, L. A.; MATTOS, A. A.; BASTOS, G. A. N. Burden of liver disease in Brazil. Liver International, v. 34, n. 6, p. 844–849, 2014.
NIKNEJAD, Hassan et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater, v. 15, p. 88-99, 2008.
PAROLINI, Ornella et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem cells, v. 26, n. 2, p. 300-311, 2008.
RAMACHANDRAN, Prakash; IREDALE, John P.; FALLOWFIELD, Jonathan A. Resolution of liver fibrosis: basic mechanisms and clinical relevance. Seminars in liver disease, v. 35, n. 2, p. 119-131, 2015.
REILLY, Debra Ann et al. Clinical experience: using dehydrated human amnion/chorion membrane allografts for acute and reconstructive burn care. Annals of plastic surgery, v. 78, n. 2, p. S19-S26, 2017.
SATO, Keisaku et al. Pathogenesis of Kupffer cells in cholestatic liver injury. The American journal of pathology, v. 186, n. 9, p. 2238-2247, 2016.
SANT’ANNA, L. B. et al. Amniotic Membrane Application Reduces Liver Fibrosis in a Bile Duct Ligation Rat Model. Cell Transplantation, v. 20, n. 3, p. 441–453, abr. 2011.
SANT’ANNA, L. B. et al. Antifibrotic effects of human amniotic membrane transplantation in established biliary fibrosis induced in rats. Cell transplantation., v. 25, n. 12, p. 2245-2257, 2016.
SANT’ANNA, L. B. et al. Long-term effects of human amniotic membrane in a rat model of biliary fibrosis. Braz J Med Biol Res., v. 50, n. 7, p. 1-12, 2017.
SEIFELDIN, A. et al. Vaginal wall repair—using amniotic membrane graft. Obstet Gynecol Int J, v. 2, n. 5, p. 00056, 2015.
SHETTY, Sonia S.; CHATTERJEE, Anirban; BOSE, Somik. Bilateral multiple recession coverage with platelet-rich fibrin in comparison with amniotic membrane. Journal of Indian Society of Periodontology, v. 18, n. 1, p. 102, 2014.
SILINI, Antonietta et al. Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies. Current stem cell research & therapy, v. 8, n. 1, p. 6-14, 2013.
SILINI, Antonietta R. et al. Is immune modulation the mechanism underlying the beneficial effects of amniotic cells and their derivatives in regenerative medicine?. Cell transplantation, v. 26, n. 4, p. 531-539, 2017.
SILINI, A. R. et al. The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, v. 3, 2015.
SUN, Mengxi; KISSELEVA, Tatiana. Reversibility of liver fibrosis. Clinics and research in hepatology and gastroenterology, v. 39, p. S60-S63, 2015.
TAG, Carmen G. et al. Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. JoVE (Journal of Visualized Experiments), n. 96, p. e52438, 2015.
TAN, J. L. et al. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transpl
v. 23, n.3, p. 319-328, 2014.
TACKE, Frank; ZIMMERMANN, Henning W. Macrophage heterogeneity in liver injury and fibrosis. Journal of hepatology, v. 60, n. 5, p. 1090-1096, 2014.
TSUNO, Hiroaki et al. Intraoral application of hyperdry amniotic membrane to surgically exposed bone surface. Oral surgery, oral medicine, oral pathology and oral radiology, v. 117, n. 2, p. e83-e87, 2014.
XU, Yejin et al. Interleukin 10 Gene-Modified Bone Marrow-Derived Dendritic Cells Attenuate Liver Fibrosis in Mice by Inducing Regulatory T Cells and Inhibiting the TGF-β/Smad Signaling Pathway. Mediators of inflammation, v. 2019, 2019.
WERMUTH, Peter J.; JIMENEZ, Sergio A. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and translational medicine, v. 4, n. 1, p. 2, 2015.
WOLBANK, Susanne et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue engineering, v. 13, n. 6, p. 1173-1183, 2007.
YANG, Ju Dong et al. Cirrhosis is present in most patients with hepatitis B and hepatocellular carcinoma. Clinical Gastroenterology and Hepatology, v. 9, n. 1, p. 64-70, 2011.
ZIMMERMANN, Henning W.; TRAUTWEIN, Christian; TACKE, Frank. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Frontiers in physiology, v. 3, p. 1-18, 2012.
ZOU, An et al. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis. Journal of Biological Chemistry, v. 293, n. 22, p. 8656-8671, 2018.
Downloads
Publicado
2020-07-01
Como Citar
Maciel Teixeira, R. J., Alves, A. P. da S., Silva, R. M. da, Carnevari, R. de A., & Sant’Anna, L. B. (2020). A ATUAÇÃO DA MEMBRANA AMNIÓTICA NA EXPRESSÃO DOS GENES CD206 E IL-12B NA FIBROSE HEPÁTICA BILIAR. Revista Univap, 26(50), 47–63. https://doi.org/10.18066/revistaunivap.v26i50.2340
Edição
Seção
Ciências da Saúde
Licença
Esse trabalho está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v26i50.2340Resumo
A fibrose hepática é a consequência das doenças crônicas do fígado, e quando não tratada evolui para a cirrose, cujo único tratamento efetivo é o transplante do órgão. Estudos prévios demonstraram que a membrana amniótica humana (MA), reduziu a fibrose biliar inibindo sua progressão para a cirrose hepática. Acredita-se que um dos mecanismos desta ação seja a modulação dos macrófagos M1 e M2, células que atuam na progressão e regressão da fibrose, respectivamente. O objetivo deste estudo foi analisar o efeito da MA na expressão de genes relacionados aos macrófagos M1 e M2 na fibrose hepática por meio da técnica de PCR quantitativa em tempo real (RT-qPCR). Duas semanas após a indução da fibrose pela ligadura do ducto biliar (LDB), um fragmento de MA foi aplicado ao fígado. Quatro semanas após a aplicação da MA, amostras do fígado foram submetidas a extração do RNA, síntese de cDNA e RT-qPCR. Foi observado aumento significativo da expressão dos genes CD206, e IL-12b após a aplicação da MA em relação as amostras de fígado sem a presença da mesma, sugerindo que a MA pode estimular a expressão do gene CD206, que está associado ao macrófago M2, e reparação da fibrose, mas também pode ter o potencial de estimular a expressão do gene IL-12b, associada ao macrófago M1. Estes resultados sugerem a presença de ambos os subtipos de macrófagos durante a regressão da fibrose biliar, a qual foi evidenciada previamente pelo nosso grupo de pesquisa, utilizando os mesmos grupos experimentais. Assim, estudos futuros com outros genes contribuirão para o melhor entendimento da ação antifibrótica da MA por meio do aumento de M2 no tecido hepático.Downloads
Referências
AZZAM, H. S. et al. Natural products and chronic hepatitis C virus. Liver International, v. 27, n. 1, p. 17-25, 2007.
BISWAS, S.; SHARMA, S. Hepatic Fibrosis and its Regression: The Pursuit of Treatment. Journal of Liver Research, Disorders & Therapy, v. 2, n. 2, p. 36-39, 2016.
BOURNE, Gordon L.; BENIRSCHKE, Kurt. Absent umbilical artery: a review of 113 cases. Archives of disease in childhood, v. 35, n. 184, p. 534, 1960.
BRITO, Flaviane de Souza. Avaliação do tecido hepático sob influência da membrana amniótica humana na fibrose hepática biliar em ratos. São José dos Campos, SP, 2015. 78 f. Dissertação (Mestrado em Ciências Biológicas) - Universidade do Vale do Paraíba, São José dos Campos, 2015.
CHEN, W. Y. et al. Chromium attenuates hepatic damage in a rat model of chronic cholestasis. Life Sci., v. 84, p. 606–614, 2009.
DEHGHANI, Mehdi et al. Grafting with cryopreserved amniotic membrane versus conservative wound care in treatment of pressure ulcers: a randomized clinical trial. Bulletin of Emergency & Trauma, v. 5, n. 4, p. 249, 2017.
DOOLEY, James S. et al. Sherlock's diseases of the liver and biliary system. John Wiley & Sons, 2018.
EBRAHIMI, Hedyeh; NADERIAN, Mohammadreza; SOHRABPOUR, Amir Ali. New concepts on reversibility and targeting of liver fibrosis; a review article. Middle East journal of digestive diseases, v. 10, n. 3, p. 133, 2018.
ECKERT, Christoph et al. The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Frontiers in immunology, v. 6, p. 179, 2015.
FÉNELON, Mathilde et al. Human amniotic membrane for guided bone regeneration of calvarial defects in mice. Journal of Materials Science: Materials in Medicine, v. 29, n. 6, p. 78, 2018.
GIMENES, Fernanda Raphael Escobar et al. Nursing Assessment Tool for People With Liver Cirrhosis. Gastroenterology Nursing, v. 39, n. 4, p. 264-272, 2016.
GUILLOT, A.; TACKE, F. Liver Macrophages: Old Dogmas and New Insights Hepatology Communications, v. 3, n. 6, p. 730-743, 2019
JU, Cynthia; TACKE, Frank. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cellular & molecular immunology, v. 13, n. 3, p. 316, 2016.
KAR, I. B. et al. Repair of oral mucosal defects with cryopreserved human amniotic membrane grafts: prospective clinical study. International Journal of Oral and Maxillofacial Surgery, v. 43, n. 11, p. 1339-1344, 2014.
KOO, Sue-jie; GARG, Nisha J. Metabolic programming of macrophage functions and pathogens control. Redox Biology, v. 24, 2019.
KRENKEL, Oliver et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology, v. 67, n. 4, p. 1270-1283, 2018.
KUBO, Shoji et al. Previous or occult hepatitis B virus infection in hepatitis C virus-associated hepatocellular carcinoma without hepatic fibrosis. Digestive diseases and sciences, v. 46, n. 11, p. 2408-2414, 2001.
KUBO, S. et al. Human Amnion-Derived Mesenchymal Stem Cell Transplantation Ameliorates Liver Fibrosis in Rats. Transplantation Direct, v.1, n.4, p. 1-9, 2015.
LI, HAI et al. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets. BMJ open gastroenterology, v. 3, n. 1, p. e000079, 2016.
LI, Melissa K.; CRAWFORD, James M. The pathology of cholestasis. In: Seminars in liver disease. Copyright© by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA., 2004. p. 21-42, 2004.
LIU, Baoding. Uncertain risk analysis and uncertain reliability analysis. Journal of Uncertain Systems, v. 4, n. 3, p. 163-170, 2010.
LUO, X.Y. et al. Transplantation of bone marrow mesenchymal stromal cells attenuates liver fibrosis in mice by regulating macrophage subtypes. Stem Cell Res Ther, v. 10, n. 16, 2019.
MAMEDE, Ana Catarina et al. Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. The Journal of membrane biology, v. 247, n. 4, p. 357-360, 2014.
MAMEDE, Karina M.; SANT’ANNA, Luciana B. Antifibrotic effects of total or partial application of amniotic membrane in hepatic fibrosis. Anais da Academia Brasileira de Ciências, v. 91, n. 3, 2019.
MANUELPILLAI, Ursula et al. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLoS One, v. 7, n. 6, p. e38631, 2012.
MAYMÓ, Julieta L. et al. Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation. PloS one, v. 13, n. 1, p. e0191489, 2018.
MOSSER, David M.; EDWARDS, Justin P. Exploring the full spectrum of macrophage activation. Nature reviews immunology, v. 8, n. 12, p. 958, 2008.
MOHAMED, Hoda E. et al. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model. Experimental Biology and Medicine, v. 241, n. 6, p. 581-591, 2016.
MURPHY, S. V. et al. Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transpl, v. 21, n. 7, p. 1477-1492, 2012.
NADER, L. A.; MATTOS, A. A.; BASTOS, G. A. N. Burden of liver disease in Brazil. Liver International, v. 34, n. 6, p. 844–849, 2014.
NIKNEJAD, Hassan et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater, v. 15, p. 88-99, 2008.
PAROLINI, Ornella et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem cells, v. 26, n. 2, p. 300-311, 2008.
RAMACHANDRAN, Prakash; IREDALE, John P.; FALLOWFIELD, Jonathan A. Resolution of liver fibrosis: basic mechanisms and clinical relevance. Seminars in liver disease, v. 35, n. 2, p. 119-131, 2015.
REILLY, Debra Ann et al. Clinical experience: using dehydrated human amnion/chorion membrane allografts for acute and reconstructive burn care. Annals of plastic surgery, v. 78, n. 2, p. S19-S26, 2017.
SATO, Keisaku et al. Pathogenesis of Kupffer cells in cholestatic liver injury. The American journal of pathology, v. 186, n. 9, p. 2238-2247, 2016.
SANT’ANNA, L. B. et al. Amniotic Membrane Application Reduces Liver Fibrosis in a Bile Duct Ligation Rat Model. Cell Transplantation, v. 20, n. 3, p. 441–453, abr. 2011.
SANT’ANNA, L. B. et al. Antifibrotic effects of human amniotic membrane transplantation in established biliary fibrosis induced in rats. Cell transplantation., v. 25, n. 12, p. 2245-2257, 2016.
SANT’ANNA, L. B. et al. Long-term effects of human amniotic membrane in a rat model of biliary fibrosis. Braz J Med Biol Res., v. 50, n. 7, p. 1-12, 2017.
SEIFELDIN, A. et al. Vaginal wall repair—using amniotic membrane graft. Obstet Gynecol Int J, v. 2, n. 5, p. 00056, 2015.
SHETTY, Sonia S.; CHATTERJEE, Anirban; BOSE, Somik. Bilateral multiple recession coverage with platelet-rich fibrin in comparison with amniotic membrane. Journal of Indian Society of Periodontology, v. 18, n. 1, p. 102, 2014.
SILINI, Antonietta et al. Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies. Current stem cell research & therapy, v. 8, n. 1, p. 6-14, 2013.
SILINI, Antonietta R. et al. Is immune modulation the mechanism underlying the beneficial effects of amniotic cells and their derivatives in regenerative medicine?. Cell transplantation, v. 26, n. 4, p. 531-539, 2017.
SILINI, A. R. et al. The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, v. 3, 2015.
SUN, Mengxi; KISSELEVA, Tatiana. Reversibility of liver fibrosis. Clinics and research in hepatology and gastroenterology, v. 39, p. S60-S63, 2015.
TAG, Carmen G. et al. Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. JoVE (Journal of Visualized Experiments), n. 96, p. e52438, 2015.
TAN, J. L. et al. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transpl
v. 23, n.3, p. 319-328, 2014.
TACKE, Frank; ZIMMERMANN, Henning W. Macrophage heterogeneity in liver injury and fibrosis. Journal of hepatology, v. 60, n. 5, p. 1090-1096, 2014.
TSUNO, Hiroaki et al. Intraoral application of hyperdry amniotic membrane to surgically exposed bone surface. Oral surgery, oral medicine, oral pathology and oral radiology, v. 117, n. 2, p. e83-e87, 2014.
XU, Yejin et al. Interleukin 10 Gene-Modified Bone Marrow-Derived Dendritic Cells Attenuate Liver Fibrosis in Mice by Inducing Regulatory T Cells and Inhibiting the TGF-β/Smad Signaling Pathway. Mediators of inflammation, v. 2019, 2019.
WERMUTH, Peter J.; JIMENEZ, Sergio A. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and translational medicine, v. 4, n. 1, p. 2, 2015.
WOLBANK, Susanne et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue engineering, v. 13, n. 6, p. 1173-1183, 2007.
YANG, Ju Dong et al. Cirrhosis is present in most patients with hepatitis B and hepatocellular carcinoma. Clinical Gastroenterology and Hepatology, v. 9, n. 1, p. 64-70, 2011.
ZIMMERMANN, Henning W.; TRAUTWEIN, Christian; TACKE, Frank. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Frontiers in physiology, v. 3, p. 1-18, 2012.
ZOU, An et al. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis. Journal of Biological Chemistry, v. 293, n. 22, p. 8656-8671, 2018.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Esse trabalho está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
http://creativecommons.org/licenses/by/4.0/legalcode