STUDY OF PROPERTIES OF PORTLAND CEMENT PASTES MODIFIED WITH TITANIUM DIOXIDE NANOPARTICLES
DOI:
https://doi.org/10.18066/revistaunivap.v31i70.4583Keywords:
Portland cement paste, TiO2 nanoparticles, axial compression strength, chloride penetration, acid attackAbstract
Durability is an important parameter for Portland cement-based structures exposed to aggressive environments. In this sense, this study aimed to investigate the influence of the addition of titanium dioxide nanoparticles (TiO2NPs) on the properties of Portland cement pastes. For this purpose, three types of pastes were prepared. The test specimens of the pastes were named CP0, for the reference paste without TiO2NPs, and CP01 and CP05, for the pastes containing TiO2NPs at concentrations of 0.1 and 0.5% about the mass of Portland cement, respectively. The TiO2NPs used presented sizes ranging from 20 to 45 nm. Raman mapping and scanning electron microscopy analyses confirmed the presence of TiO2NPs dispersed in the pastes. The results of the axial compression test showed that the addition of TiO2NPs did not affect the mechanical strength of the test specimens. However, they demonstrated an influence on the resistance to chloride penetration. This resistance was dependent on the percentage of TiO2NPs in the paste, being higher for the CP05 samples. Likewise, an improvement in the resistance to acid attack was also observed with the increase in the TiO2NPs content. Therefore, it is concluded that the addition of TiO2NPs in the composition of Portland cement pastes can contribute to increasing their durability in aggressive environments.
Downloads
References
Abdalla, J. A., Hawileh, R. A., Bahurudeen, A., Jittin, Syed Ahmed Kabeer, K. I., & Thomas, B. S. (2023). Influence of synthesized nanomaterials in the strength and durability of cementitious composites. Case Studies in Construction Materials, 18, e02197. https://doi.org/10.1016/j.cscm.2023.e02197.
Althoey, F., Zaid, O., Martínez-García, R., Alsharari, F., Ahmed, M., & Arbili, M. M. (2023). Impact of Nano-silica on the hydration, strength, durability, and microstructural properties of concrete: A state-of-the-art review. Case Studies in Construction Materials, 18, e01997. https://doi.org/10.1016/j.cscm.2023.e01997
Associação Brasileira de Normas Técnicas. (2018). ABNT NBR 5739. Concreto – Ensaio de compressão de corpos de prova cilíndricos. ABNT.
Balaji, S., Djaoued, Y., & Robichaud, J. (2006). Phonon confinement studies in nanocrystalline anatase‐TiO2 thin films by micro Raman spectroscopy. Journal of Raman Spectroscopy, 37(12), 1416–1422. https://doi.org/10.1002/jrs.1566.
Daniyal, M., Akhtar, S., & Azam, A. (2019). Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments. Journal of Materials Research and Technology, 8(6), 6158–6172. https://doi.org/10.1016/j.jmrt.2019.10.010.
Dikkar, H., Kapre, V., Diwan, A., & Sekar, S. K. (2021). Titanium dioxide as a photocatalyst to create self-cleaning concrete. Materials Today: Proceedings, 45, 4058–4062. https://doi.org/10.1016/j.matpr.2020.10.948.
Feng, D., Xie, N., Gong, C., Leng, Z., Xiao, H., Li, H., & Shi, X. (2013). Portland Cement Paste Modified by TiO2 Nanoparticles: A Microstructure Perspective. Industrial & Engineering Chemistry Research, 52(33), 11575–11582. https://doi.org/10.1021/ie4011595.
Haider, A. J., Jameel, Z. N., & Al-Hussaini, I. H. M. (2019). Review on: Titanium Dioxide Applications. Energy Procedia, 157, 17–29. https://doi.org/10.1016/j.egypro.2018.11.159.
Hanus, M. J., & Harris, A. T. (2013). Nanotechnology innovations for the construction industry. Progress in Materials Science, 58(7), 1056–1102. https://doi.org/10.1016/j.pmatsci.2013.04.001
Liu, Y., Guo, H., Zhang, Z., & Zhu, Y. (2024). Hydration mechanism and photocatalytic antibacterial performance of cement-based composites modified by hydrophilic nano-TiO2 particles. Construction and Building Materials, 419, 135538. https://doi.org/10.1016/j.conbuildmat.2024.135538.
Loh, K., Gaylarde, C. C., & Shirakawa, M. A. (2018). Photocatalytic activity of ZnO and TiO2 ‘nanoparticles’ for use in cement mixes. Construction and Building Materials, 167, 853–859. https://doi.org/10.1016/j.conbuildmat.2018.02.103.
Kurihara, R., & Maruyama, I. (2018). Impact of TiO2 Nanoparticles on Drying Shrinkage of Hardened Cement Paste. Journal of Advanced Concrete Technology, 16(6), 272–281. https://doi.org/10.3151/jact.16.272.
Li, Z., Afshinnia, K., & Rangaraju, P. R. (2016). Effect of alkali content of cement on properties of high performance cementitious mortar. Construction and Building Materials, 102, 631–639. https://doi.org/10.1016/j.conbuildmat.2015.10.110
Mohajerani, A., Burnett, L., Smith, J. V., Kurmus, H., Milas, J., Arulrajah, A., Horpibulsuk, S., & Abdul Kadir, A. (2019). Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials, 12(19), 3052. https://doi.org/10.3390/ma12193052
Molleman, B., & Hiemstra, T. (2018). Size and shape dependency of the surface energy of metallic nanoparticles: Unifying the atomic and thermodynamic approaches. Physical Chemistry Chemical Physics, 20(31), 20575–20587. https://doi.org/10.1039/C8CP02346H.
Nam, K. Y. (2017). Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles. The Journal of Advanced Prosthodontics, 9(3), 217. https://doi.org/10.4047/jap.2017.9.3.217.
Naniwa, S., Kato, K., Yamakata, A., Yamamoto, A., & Yoshida, H. (2023). A quantitative study on the relationship of specific surface area and carrier lifetime to photocatalytic activity of anatase TiO2 nanoparticles. ACS Catalysis, 13(22), 15212-15218. https://doi.org/10.1021/acscatal.3c04209
Papadaki, D., Kiriakidis, G., & Tsoutsos, T (2018). Applications of nanotechnology in construction industry. In A. Barhoum & A. S. H. Makhlouf (Eds). Fundamentals of Nanoparticles Classifications, Synthesis Methods, Properties and Characterization (pp. 343-370). Elsevier. https://doi.org/10.1016/b978-0-323-51255-8.00011-2
Patel, G. M., Shah, V., Bhaliya, J., & Mehta, K. (2022). Nanomaterials for construction building products designed to withstand natural disasters. In A. Denizli, T. A. Nguyen, M. S. Alencar, & D. E. Motaung (eds.). Micro and Nano Technologies, Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention (pp. 19-42). Elsevier. https://doi.org/10.1016/B978-0-323-91166-5.00008-2
Ren, J., Lai, Y., & Gao, J. (2018). Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete. Construction and Building Materials, 175, 277-285. https://doi.org/10.1016/j.conbuildmat.2018.04.181
Sahyun, M. R. V. (1974). Mechanisms in photographic chemistry. Journal of Chemical Education, 51(2), 72. https://doi.org/10.1021/ed051p72.
Silva, G. F. (2006). Estudo de concreto de alto desempenho frente à ação de cloretos. [Tese de doutorado. Escola de Engenharia de São Carlos, Universidade de São Paulo]. https://doi.org/10.11606/t.88.2006.tde-26072006-135429
Slosarczyk, A., Klapiszewska, I., Skowroska, D., Janczarek, M., Jesionowski, T., & Klapiszewsk, L. (2023). A comprehensive review of building materials modified with metal and metal oxide nanoparticles against microbial multiplication and growth. Chemical Engineering Journal, 466, 143276. https://doi.org/10.1016/j.cej.2023.143276.
Stief, J. N. d. P. (2014). Comportamento reológico e mecânico de pastas de cimento fabricado com nanotubos de carbono crescidos em clinquer para poços de petróleo. [Tese de doutorado. Escola de Engenharia, Universidade Federal de Minas Gerais]. http://hdl.handle.net/1843/PASA-A9CJJJ
Thammadi, S. P. D. & Pisini, S. K. (2022). Nanotechnology and building construction: Towards effective stakeholders engagement. IOP Conference Series: Earth and Environmental Science, 1084(1), 012074. https://doi.org/10.1088/1755-1315/1084/1/012074.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
Zhang, R., Cheng, X., Hou, P., & Ye, Z. (2015). Influences of nano-tio2 on the properties of cement-based materials: hydration and drying shrinkage. Construction and Building Materials, 81, 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003
Utsev, T.; Tiza, T. M.; Mogbo, O.; Singh, S. K.; Chakravarti, A.; Shaik, N., & Singh, S. P. (2022). Application of nanomaterials in civil engineering. Materials Today: Proceedings, 62, 5140-5146. https://doi.org/10.1016/j.matpr.2022.02.480
Venkatanarayanan, H. K., & Rangaraju, P. R. (2014). Evaluation of Sulfate Resistance of Portland Cement Mortars Containing Low Carbon Rice Husk Ash. Journal of Materials in Civil Engineering, 26(4), 582-592. https://doi.org/10.1061/(asce)mt.1943-5533.0000868
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Univap

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode