A INTEGRAÇÃO DO CONHECIMENTO CIENTÍFICO E A PRODUÇÃO SUSTENTÁVEL DE TERMOPLÁSTICOS VULCANIZADOS A PARTIR DE RESÍDUOS DE PNEUS
INTEGRATION OF SCIENTIFIC KNOWLEDGE AND SUSTAINABLE PRODUCTION OF THERMOPLASTIC VULCANIZATES FROM TIRE WASTEDEVELOPMENT OF THEMOPLASTIC VULCANIZES FROM WASTE TIRE
DOI:
https://doi.org/10.18066/revistaunivap.v30i68.4512
Resumo
Este estudo aborda a utilização sustentável de resíduos sólidos, com adição de pó de pneu no Polietileno para produzir Termoplásticos Vulcanizados (TPVs). A técnica de compatibilização não reativa mostrou melhorias no módulo elástico do PEBD. As amostras compatibilizadas com EVA apresentaram menor variação no envelhecimento, e maior resistência ao impacto quando combinadas com SBR. Os resultados mostram a influência da massa molar no escoamento dos polímeros. O estudo contribui para o desenvolvimento de TPVs sustentáveis e melhoria nas propriedades físico-mecânicas. A iniciação científica em TPV proporcionou aos alunos habilidades investigativas e científicas, preparando-os para enfrentar desafios no separador mercado de trabalho
Downloads
Não há dados estatísticos.
Referências
Agrawal, P., Silva, M. H. A., Cavalcanti, S. N., Freitas, D. M. G., Araújo, J. P., Oliveira, A. D. B., & Mélo, T. J. A. (2022). Rheological properties of high-density polyethylene/linear low-density polyethylene and high-density polyethylene/low-density polyethylene blends. Polymer Bulletin, 79(4), 2321–2343. https://doi.org/10.1007/s00289-021-03635-8
American society for testing and materials D256-14 (2014). Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics. West Conshohocken, PA. ASTM International.
American society for testing and materials D638-14 )2014).0 Standard Test Method for Tensile Properties of Plastics. West Conshohocken, PA. ASTM International.
American society for testing and materials D1238-14 (2014). Standard Test Method for Melt Flow Rates of Thermoplastics by extrusion Plastometer. West Conshohocken, PA. ASTM International.
American society for testing and materials D2240-15 (2015). Standard Test Method for Rubber Property - Durometer Hardness. West Conshohocken, PA. ASTM International.
Ahmad, H. M., Kamal, M. S., & Al-Harthi, M. A. (2018). Rheological and filtration properties of clay-polymer systems: Impact of polymer structure. Applied Clay Science, 160, 226–237. https://doi.org/10.1016/j.clay.2018.01.016
Alcântara, S. P., Sirqueira, A. S., Santos, T. A., & Naccache, M. F. (2020). In Situ Compatibilization of Polyamide 6/Carboxylated Acrylonitrile Butadiene Rubber Blends with Polyhedral Oligomeric Silsesquioxane. Macromolecular Symposia, 394(1). https://doi.org/10.1002/masy.202000032
Bouchart, V., Bhatnagar, N., Brieu, M., Ghosh, A. K., & Kondo, D. (2008). Study of EPDM/PP polymeric blends: mechanical behavior and effects of compatibilization. Comptes Rendus - Mecanique, 336(9), 714–721. https://doi.org/10.1016/j.crme.2008.06.004
Brown, Morton B.; Forsythe, Alan B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69(346): 364–367. https://doi:10.1080/01621459.1974.10482955
Carvalho, A. P. A., & Sirqueira, A. S. (2016). Effect of compatibilization in situ on PA/SEBS blends. Polimeros, 26(2). https://doi.org/10.1590/0104-1428.2195
Cossa, M. M., Sirqueira, A. S., & Soares, B. G. (2009). Development of thermoplastic elastomers vulcanized (TPV) with polypropylene waste tire. I - Factorial design experiments. Polimeros, 19(3). https://doi.org/10.1590/s0104-14282009000300006
Kort, G. W., Saidi, S., Hermida-Merino, D., Leone, N., Srinivas, V., Rastogi, S., & Wilsens, C. H. R. M. (2020). Importance of viscosity control for recyclable reinforced thermoplastic composites. Macromolecules, 53(15), 6690–6702. https://doi.org/10.1021/acs.macromol.9b02689
Favakeh, M., Bazgir, S., & Karbasi, M. (2020). Dynamically vulcanized thermoplastic elastomer nanocomposites based on linear low-density polyethylene/styrene-butadiene rubber/nanoclay/bitumen: morphology and rheological behavior. Iranian Polymer Journal (English Edition), 29(3), 209–217. https://doi.org/10.1007/s13726-020-00786-9
Ferreira, K. R. M., Leite, I. F., Siqueira, A. D. S., Raposo, C. M. O., Carvalho, L. H., & Silva, S. M. L. (2011). The use of an organoclay on the compatibilization of PP/EPDM blends. Polimeros, 21(5). https://doi.org/10.1590/S0104-14282011005000072
France, A. P. (2021, June 10). Pandemia provocou leve queda na produção mundial de plástico, a 3a desde a Segunda Guerra Mundial. O Globo. https://g1.globo.com/economia/noticia/2021/06/10/pandemia-provocou-leve-queda-na-producao-mundial-de-plastico-a-3a-desde-a-segunda-guerra-mundial.ghtml
Ghahramani, N., Iyer, K. A., Doufas, A. K., & Hatzikiriakos, S. G. (2020). Rheology of thermoplastic vulcanizates (TPVs). Journal of Rheology, 64(6), 1325–1341. https://doi.org/10.1122/8.0000108
González, J., Rosales, C., González, M., León, N., Escalona, R., & Rojas, H. (2017). Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes. Journal of Applied Polymer Science, 134(26). https://doi.org/10.1002/app.44996
Gouveia, N. (2012). Resíduos sólidos urbanos: impactos socioambientais e perspectiva de manejo sustentável com inclusão social. Ciência e Saúde Coletiva, 17(6), 1503–1510.
Innes, J. R., Shriky, B., Nocita, D., Thompson, G., Coates, P., Whiteside, B., Kelly, A., & Hebda, M. (2023). Development of thermoplastic vulcanizates based on polypropylene/ethylene propylene diene monomer for prototyping by Fused Filament Fabrication. Polymer, 273. https://doi.org/10.1016/j.polymer.2023.125839
Kassa, H. G., Stuyver, J., Bons, A. J., Haviland, D. B., Thorén, P. A., Borgani, R., Forchheimer, D., & Leclère, P. (2018). Nano-mechanical properties of interphases in dynamically vulcanized thermoplastic alloy. Polymer, 135, 348–354. https://doi.org/10.1016/j.polymer.2017.11.072
Khunprasert, S., Thongyai, S., Chinsirikul, W., & Wacharawichanant, S. (2009). Effect of low-molar-mass liquid crystal on the melt processing conditions of polycarbonate using single screw extruder. Journal of Applied Polymer Science, 113(2), 752–756. https://doi.org/10.1002/app.29873
Ma, P., Xu, P., Zhai, Y., Dong, W., Zhang, Y., & Chen, M. (2015). Biobased Poly(lactide)/ethylene-co-vinyl Acetate Thermoplastic Vulcanizates: Morphology Evolution, Superior Properties, and Partial Degradability. ACS Sustainable Chemistry and Engineering, 3(9), 2211–2219. https://doi.org/10.1021/acssuschemeng.5b00462
Magioli, M., Sirqueira, A. S., & Soares, B. G. (2010). The effect of dynamic vulcanization on the mechanical, dynamic mechanical and fatigue properties of TPV based on polypropylene and ground tire rubber. Polymer Testing, 29(7). https://doi.org/10.1016/j.polymertesting.2010.07.008
Ning, N., Li, S., Wu, H., Tian, H., Yao, P., HU, G. H., Tian, M., & Zhang, L. (2018). Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review. In Progress in Polymer Science 79, pp. 61–97. Elsevier Ltd. https://doi.org/10.1016/j.progpolymsci.2017.11.003
Ning, N., Li, X., Tian, H., Hua, Y., Zuo, H., Yao, P., Zhang, L., Wu, Y., Hu, G. H., & Tian, M. (2017). Unique microstructure of an oil resistant nitrile butadiene rubber/polypropylene dynamically vulcanized thermoplastic elastomer. RSC Advances, 7(9), 5451–5458. https://doi.org/10.1039/c6ra24891h
Paran, S. M. R., Naderi, G., Ghoreishy, M. H. R., & Heydari, A. (2018). Enhancement of mechanical, thermal and morphological properties of compatibilized graphene reinforced dynamically vulcanized thermoplastic elastomer vulcanizates based on polyethylene and reclaimed rubber. Composites Science and Technology, 161, 57–65. https://doi.org/10.1016/j.compscitech.2018.04.006
Pereira, E. C. L., Soares, B. G., Jesus, R. B., & Sirqueira, A. S. (2018). DGEBA-Based Epoxy Resin as Compatibilizer for Biodegradable Poly (lactic acid)/Poly(butylene adipate-co-terephthalate) Blends. Macromolecular Symposia, 381(1). https://doi.org/10.1002/masy.201800133
Ponsard-Fillette, M., Barrès, C., & Cassagnau, P. (2005). Viscoelastic study of oil diffusion in molten PP and EPDM copolymer. Polymer, 46(23), 10256–10268. https://doi.org/10.1016/j.polymer.2005.08.015
Rogulska, M. (2018). Transparent sulfur-containing thermoplastic polyurethanes with polyether and polycarbonate soft segments. Polymer Bulletin, 75(3), 1211–1235. https://doi.org/10.1007/s00289-017-2088-x
Ruiz, B. A., Cintho, O. M., & Sowek, A. B. (2020). Caracterização de misturas de peuamm com resíduo de pneu obtidos através de moagem de alta energia. Brazilian Journal of Development, 6(3), 9746–9759. https://doi.org/10.34117/bjdv6n3-013
Santos, E. S., Cristina, A., & Brêtas, P. (2013). Ensinando e aprendendo educação ambiental com jovens. Revista Ciência Em Extensão, 9(3), 82–93.
Shapiro, S.S., Wilk, M.B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(4), 591-611. https://doi.org/10.2307/2333709
Scares, B. G., Almeida, M. S. M., Leyva, M. E., & Sirqueira, A. S. (2006). Mechanical and morphological properties of polypropylene/nitrile butadiene rubber compatibilized vulcanizates. KGK Kautschuk Gummi Kunststoffe, 59(3).
Silva, J. B. da, Pereira, I. N. A., & Pinheiro, É. C. N. M. (2021). Análise da viabilidade técnica da utilização de resíduos de borracha de pneus em pavimentos asfálticos / Analysis of the technical feasibility of using waste tire rubber in asphalt sidewalks. Brazilian Journal of Development, 7(11), 108529–108544. https://doi.org/10.34117/bjdv7n11-467
Sirqueira, A. da S., & Fiore, C. A. G. (2022). Resíduo de pneus inservíveis na composição da massa asfáltica. Brazilian Journal of Development, 8(10), 68538–68548. https://doi.org/10.34117/bjdv8n10-230
Sirqueira, A. da S., & Santos, M. C. C. (2023). Escolaridade e educação ambiental na região da extrema zona oeste do Rio de Janeiro. Revista Sociedade e Tecnologia, 19, 136–148. https://doi.org/10.3895/rts.v19n55.15109
Sirqueira, A. S., & Soares, B. G. (2002). Mercapto-modified copolymers in elastomer blends. IV. The compatibilization of natural rubber/EPDM blends. Journal of Applied Polymer Science, 83(13). https://doi.org/10.1002/app.10283
Sirqueira, A. S., & Soares, B. G. (2007). Compatibilization of natural rubber/EPDM blends by anhydride- and mercapto-functionalized copolymers. Journal of Macromolecular Science, Part B: Physics, 46 B(4). https://doi.org/10.1080/00222340701386569
Soares, B. G., De Oliveira, M., Meireles, D., Sirqueira, A. S., & Mauler, R. S. (2008). Dynamically vulcanized polypropylene/nitrile rubber blends: The effect of peroxide/bis-maleimide curing system and different compatibilizing systems. Journal of Applied Polymer Science, 110(6). https://doi.org/10.1002/app.28946
Soares, B. G., Freitas, J. B., Silva, A. A., & Sirqueira, A. S. (2019). Thermoplastic vulcanizates based on dynamically vulcanized polypropylene/carboxylated nitrile rubber blends. Rubber Chemistry and Technology, 92(3). https://doi.org/10.5254/rct.19.81480
Soares, B. G., Santos, D. M., & Sirqueira, A. S. (2008). A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends. Express Polymer Letters, 2(8). https://doi.org/10.3144/expresspolymlett.2008.72
Soares, B. G., Sirqueira, A. S., Oliveira, M. G., & Almeida, M. S. M. (2002a).Compatibilization of elastomer-based blends. Macromolecular Symposia, 189. https://doi.org/10.1002/masy.200290006
Soares, B. G., Sirqueira, A. S., Oliveira, M. G., & Almeida, M. S. M. (2002b). The reactive compatibilization of EPDM-based elastomer blends. KGK-Kautschuk Und Gummi Kunststoffe, 55(9).
Song, L. F., Bai, N., Shi, Y., Wang, Y. X., Song, L. X., & Liu, L. Z. (2023). Effects of Ethylene-Propylene-Diene Monomers (EPDMs) with Different Moony Viscosity on Crystallization Behavior, Structure, and Mechanical Properties of Thermoplastic Vulcanizates (TPVs). Polymers, 15(3). https://doi.org/10.3390/polym15030642
Stadler, F. J., Kaschta, J., Münstedt, H., Becker, F., & Buback, M. (2009). Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheologica Acta, 48(5), 479–490. https://doi.org/10.1007/s00397-008-0334-8
Teixeira, T. S., Marques, É. A., & Pereira, J. R. (2017). Educação ambiental em escolas públicas: caminho para adultos mais conscientes. Revista Ciência em Extensão, 13(1), 64-71. https://ojs.unesp.br/index.php/revista_proex/article/view/1370
Tian, M., Han, J., Wu, H., Tian, H., She, Q., Chen, W., & Zhang, L. (2012). Effect of the compatibility on the morphology and properties of acrylonitrile-butadiene rubber/polypropylene thermoplastic vulcanizates. Journal of Applied Polymer Science, 124(3), 1999–2006. https://doi.org/10.1002/app.35222
Yao, P., Wu, H., Ning, N., Zhang, L., Tian, H., Wu, Y., Hu, G., Chan, T. W., & Tian, M. (2016). Properties and unique morphological evolution of dynamically vulcanized bromo-isobutylene-isoprene rubber/polypropylene thermoplastic elastomer. RSC Advances, 6(14), 11151–11160. https://doi.org/10.1039/c5ra26171f
Downloads
Publicado
2024-12-11
Como Citar
Gonçalves, F. M., Machado, A. R., & Sirqueira, A. da S. (2024). A INTEGRAÇÃO DO CONHECIMENTO CIENTÍFICO E A PRODUÇÃO SUSTENTÁVEL DE TERMOPLÁSTICOS VULCANIZADOS A PARTIR DE RESÍDUOS DE PNEUS. Revista Univap, 30(68). https://doi.org/10.18066/revistaunivap.v30i68.4512
Edição
Seção
Ciências Exatas e da Terra
Licença
Copyright (c) 2024 Revista Univap
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esse trabalho está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v30i68.4512Resumo
Este estudo aborda a utilização sustentável de resíduos sólidos, com adição de pó de pneu no Polietileno para produzir Termoplásticos Vulcanizados (TPVs). A técnica de compatibilização não reativa mostrou melhorias no módulo elástico do PEBD. As amostras compatibilizadas com EVA apresentaram menor variação no envelhecimento, e maior resistência ao impacto quando combinadas com SBR. Os resultados mostram a influência da massa molar no escoamento dos polímeros. O estudo contribui para o desenvolvimento de TPVs sustentáveis e melhoria nas propriedades físico-mecânicas. A iniciação científica em TPV proporcionou aos alunos habilidades investigativas e científicas, preparando-os para enfrentar desafios no separador mercado de trabalho
Downloads
Referências
Agrawal, P., Silva, M. H. A., Cavalcanti, S. N., Freitas, D. M. G., Araújo, J. P., Oliveira, A. D. B., & Mélo, T. J. A. (2022). Rheological properties of high-density polyethylene/linear low-density polyethylene and high-density polyethylene/low-density polyethylene blends. Polymer Bulletin, 79(4), 2321–2343. https://doi.org/10.1007/s00289-021-03635-8
American society for testing and materials D256-14 (2014). Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics. West Conshohocken, PA. ASTM International.
American society for testing and materials D638-14 )2014).0 Standard Test Method for Tensile Properties of Plastics. West Conshohocken, PA. ASTM International.
American society for testing and materials D1238-14 (2014). Standard Test Method for Melt Flow Rates of Thermoplastics by extrusion Plastometer. West Conshohocken, PA. ASTM International.
American society for testing and materials D2240-15 (2015). Standard Test Method for Rubber Property - Durometer Hardness. West Conshohocken, PA. ASTM International.
Ahmad, H. M., Kamal, M. S., & Al-Harthi, M. A. (2018). Rheological and filtration properties of clay-polymer systems: Impact of polymer structure. Applied Clay Science, 160, 226–237. https://doi.org/10.1016/j.clay.2018.01.016
Alcântara, S. P., Sirqueira, A. S., Santos, T. A., & Naccache, M. F. (2020). In Situ Compatibilization of Polyamide 6/Carboxylated Acrylonitrile Butadiene Rubber Blends with Polyhedral Oligomeric Silsesquioxane. Macromolecular Symposia, 394(1). https://doi.org/10.1002/masy.202000032
Bouchart, V., Bhatnagar, N., Brieu, M., Ghosh, A. K., & Kondo, D. (2008). Study of EPDM/PP polymeric blends: mechanical behavior and effects of compatibilization. Comptes Rendus - Mecanique, 336(9), 714–721. https://doi.org/10.1016/j.crme.2008.06.004
Brown, Morton B.; Forsythe, Alan B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69(346): 364–367. https://doi:10.1080/01621459.1974.10482955
Carvalho, A. P. A., & Sirqueira, A. S. (2016). Effect of compatibilization in situ on PA/SEBS blends. Polimeros, 26(2). https://doi.org/10.1590/0104-1428.2195
Cossa, M. M., Sirqueira, A. S., & Soares, B. G. (2009). Development of thermoplastic elastomers vulcanized (TPV) with polypropylene waste tire. I - Factorial design experiments. Polimeros, 19(3). https://doi.org/10.1590/s0104-14282009000300006
Kort, G. W., Saidi, S., Hermida-Merino, D., Leone, N., Srinivas, V., Rastogi, S., & Wilsens, C. H. R. M. (2020). Importance of viscosity control for recyclable reinforced thermoplastic composites. Macromolecules, 53(15), 6690–6702. https://doi.org/10.1021/acs.macromol.9b02689
Favakeh, M., Bazgir, S., & Karbasi, M. (2020). Dynamically vulcanized thermoplastic elastomer nanocomposites based on linear low-density polyethylene/styrene-butadiene rubber/nanoclay/bitumen: morphology and rheological behavior. Iranian Polymer Journal (English Edition), 29(3), 209–217. https://doi.org/10.1007/s13726-020-00786-9
Ferreira, K. R. M., Leite, I. F., Siqueira, A. D. S., Raposo, C. M. O., Carvalho, L. H., & Silva, S. M. L. (2011). The use of an organoclay on the compatibilization of PP/EPDM blends. Polimeros, 21(5). https://doi.org/10.1590/S0104-14282011005000072
France, A. P. (2021, June 10). Pandemia provocou leve queda na produção mundial de plástico, a 3a desde a Segunda Guerra Mundial. O Globo. https://g1.globo.com/economia/noticia/2021/06/10/pandemia-provocou-leve-queda-na-producao-mundial-de-plastico-a-3a-desde-a-segunda-guerra-mundial.ghtml
Ghahramani, N., Iyer, K. A., Doufas, A. K., & Hatzikiriakos, S. G. (2020). Rheology of thermoplastic vulcanizates (TPVs). Journal of Rheology, 64(6), 1325–1341. https://doi.org/10.1122/8.0000108
González, J., Rosales, C., González, M., León, N., Escalona, R., & Rojas, H. (2017). Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes. Journal of Applied Polymer Science, 134(26). https://doi.org/10.1002/app.44996
Gouveia, N. (2012). Resíduos sólidos urbanos: impactos socioambientais e perspectiva de manejo sustentável com inclusão social. Ciência e Saúde Coletiva, 17(6), 1503–1510.
Innes, J. R., Shriky, B., Nocita, D., Thompson, G., Coates, P., Whiteside, B., Kelly, A., & Hebda, M. (2023). Development of thermoplastic vulcanizates based on polypropylene/ethylene propylene diene monomer for prototyping by Fused Filament Fabrication. Polymer, 273. https://doi.org/10.1016/j.polymer.2023.125839
Kassa, H. G., Stuyver, J., Bons, A. J., Haviland, D. B., Thorén, P. A., Borgani, R., Forchheimer, D., & Leclère, P. (2018). Nano-mechanical properties of interphases in dynamically vulcanized thermoplastic alloy. Polymer, 135, 348–354. https://doi.org/10.1016/j.polymer.2017.11.072
Khunprasert, S., Thongyai, S., Chinsirikul, W., & Wacharawichanant, S. (2009). Effect of low-molar-mass liquid crystal on the melt processing conditions of polycarbonate using single screw extruder. Journal of Applied Polymer Science, 113(2), 752–756. https://doi.org/10.1002/app.29873
Ma, P., Xu, P., Zhai, Y., Dong, W., Zhang, Y., & Chen, M. (2015). Biobased Poly(lactide)/ethylene-co-vinyl Acetate Thermoplastic Vulcanizates: Morphology Evolution, Superior Properties, and Partial Degradability. ACS Sustainable Chemistry and Engineering, 3(9), 2211–2219. https://doi.org/10.1021/acssuschemeng.5b00462
Magioli, M., Sirqueira, A. S., & Soares, B. G. (2010). The effect of dynamic vulcanization on the mechanical, dynamic mechanical and fatigue properties of TPV based on polypropylene and ground tire rubber. Polymer Testing, 29(7). https://doi.org/10.1016/j.polymertesting.2010.07.008
Ning, N., Li, S., Wu, H., Tian, H., Yao, P., HU, G. H., Tian, M., & Zhang, L. (2018). Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review. In Progress in Polymer Science 79, pp. 61–97. Elsevier Ltd. https://doi.org/10.1016/j.progpolymsci.2017.11.003
Ning, N., Li, X., Tian, H., Hua, Y., Zuo, H., Yao, P., Zhang, L., Wu, Y., Hu, G. H., & Tian, M. (2017). Unique microstructure of an oil resistant nitrile butadiene rubber/polypropylene dynamically vulcanized thermoplastic elastomer. RSC Advances, 7(9), 5451–5458. https://doi.org/10.1039/c6ra24891h
Paran, S. M. R., Naderi, G., Ghoreishy, M. H. R., & Heydari, A. (2018). Enhancement of mechanical, thermal and morphological properties of compatibilized graphene reinforced dynamically vulcanized thermoplastic elastomer vulcanizates based on polyethylene and reclaimed rubber. Composites Science and Technology, 161, 57–65. https://doi.org/10.1016/j.compscitech.2018.04.006
Pereira, E. C. L., Soares, B. G., Jesus, R. B., & Sirqueira, A. S. (2018). DGEBA-Based Epoxy Resin as Compatibilizer for Biodegradable Poly (lactic acid)/Poly(butylene adipate-co-terephthalate) Blends. Macromolecular Symposia, 381(1). https://doi.org/10.1002/masy.201800133
Ponsard-Fillette, M., Barrès, C., & Cassagnau, P. (2005). Viscoelastic study of oil diffusion in molten PP and EPDM copolymer. Polymer, 46(23), 10256–10268. https://doi.org/10.1016/j.polymer.2005.08.015
Rogulska, M. (2018). Transparent sulfur-containing thermoplastic polyurethanes with polyether and polycarbonate soft segments. Polymer Bulletin, 75(3), 1211–1235. https://doi.org/10.1007/s00289-017-2088-x
Ruiz, B. A., Cintho, O. M., & Sowek, A. B. (2020). Caracterização de misturas de peuamm com resíduo de pneu obtidos através de moagem de alta energia. Brazilian Journal of Development, 6(3), 9746–9759. https://doi.org/10.34117/bjdv6n3-013
Santos, E. S., Cristina, A., & Brêtas, P. (2013). Ensinando e aprendendo educação ambiental com jovens. Revista Ciência Em Extensão, 9(3), 82–93.
Shapiro, S.S., Wilk, M.B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(4), 591-611. https://doi.org/10.2307/2333709
Scares, B. G., Almeida, M. S. M., Leyva, M. E., & Sirqueira, A. S. (2006). Mechanical and morphological properties of polypropylene/nitrile butadiene rubber compatibilized vulcanizates. KGK Kautschuk Gummi Kunststoffe, 59(3).
Silva, J. B. da, Pereira, I. N. A., & Pinheiro, É. C. N. M. (2021). Análise da viabilidade técnica da utilização de resíduos de borracha de pneus em pavimentos asfálticos / Analysis of the technical feasibility of using waste tire rubber in asphalt sidewalks. Brazilian Journal of Development, 7(11), 108529–108544. https://doi.org/10.34117/bjdv7n11-467
Sirqueira, A. da S., & Fiore, C. A. G. (2022). Resíduo de pneus inservíveis na composição da massa asfáltica. Brazilian Journal of Development, 8(10), 68538–68548. https://doi.org/10.34117/bjdv8n10-230
Sirqueira, A. da S., & Santos, M. C. C. (2023). Escolaridade e educação ambiental na região da extrema zona oeste do Rio de Janeiro. Revista Sociedade e Tecnologia, 19, 136–148. https://doi.org/10.3895/rts.v19n55.15109
Sirqueira, A. S., & Soares, B. G. (2002). Mercapto-modified copolymers in elastomer blends. IV. The compatibilization of natural rubber/EPDM blends. Journal of Applied Polymer Science, 83(13). https://doi.org/10.1002/app.10283
Sirqueira, A. S., & Soares, B. G. (2007). Compatibilization of natural rubber/EPDM blends by anhydride- and mercapto-functionalized copolymers. Journal of Macromolecular Science, Part B: Physics, 46 B(4). https://doi.org/10.1080/00222340701386569
Soares, B. G., De Oliveira, M., Meireles, D., Sirqueira, A. S., & Mauler, R. S. (2008). Dynamically vulcanized polypropylene/nitrile rubber blends: The effect of peroxide/bis-maleimide curing system and different compatibilizing systems. Journal of Applied Polymer Science, 110(6). https://doi.org/10.1002/app.28946
Soares, B. G., Freitas, J. B., Silva, A. A., & Sirqueira, A. S. (2019). Thermoplastic vulcanizates based on dynamically vulcanized polypropylene/carboxylated nitrile rubber blends. Rubber Chemistry and Technology, 92(3). https://doi.org/10.5254/rct.19.81480
Soares, B. G., Santos, D. M., & Sirqueira, A. S. (2008). A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends. Express Polymer Letters, 2(8). https://doi.org/10.3144/expresspolymlett.2008.72
Soares, B. G., Sirqueira, A. S., Oliveira, M. G., & Almeida, M. S. M. (2002a).Compatibilization of elastomer-based blends. Macromolecular Symposia, 189. https://doi.org/10.1002/masy.200290006
Soares, B. G., Sirqueira, A. S., Oliveira, M. G., & Almeida, M. S. M. (2002b). The reactive compatibilization of EPDM-based elastomer blends. KGK-Kautschuk Und Gummi Kunststoffe, 55(9).
Song, L. F., Bai, N., Shi, Y., Wang, Y. X., Song, L. X., & Liu, L. Z. (2023). Effects of Ethylene-Propylene-Diene Monomers (EPDMs) with Different Moony Viscosity on Crystallization Behavior, Structure, and Mechanical Properties of Thermoplastic Vulcanizates (TPVs). Polymers, 15(3). https://doi.org/10.3390/polym15030642
Stadler, F. J., Kaschta, J., Münstedt, H., Becker, F., & Buback, M. (2009). Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheologica Acta, 48(5), 479–490. https://doi.org/10.1007/s00397-008-0334-8
Teixeira, T. S., Marques, É. A., & Pereira, J. R. (2017). Educação ambiental em escolas públicas: caminho para adultos mais conscientes. Revista Ciência em Extensão, 13(1), 64-71. https://ojs.unesp.br/index.php/revista_proex/article/view/1370
Tian, M., Han, J., Wu, H., Tian, H., She, Q., Chen, W., & Zhang, L. (2012). Effect of the compatibility on the morphology and properties of acrylonitrile-butadiene rubber/polypropylene thermoplastic vulcanizates. Journal of Applied Polymer Science, 124(3), 1999–2006. https://doi.org/10.1002/app.35222
Yao, P., Wu, H., Ning, N., Zhang, L., Tian, H., Wu, Y., Hu, G., Chan, T. W., & Tian, M. (2016). Properties and unique morphological evolution of dynamically vulcanized bromo-isobutylene-isoprene rubber/polypropylene thermoplastic elastomer. RSC Advances, 6(14), 11151–11160. https://doi.org/10.1039/c5ra26171f
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Univap
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esse trabalho está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.
Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original.
http://creativecommons.org/licenses/by/4.0/legalcode