STRUCTURAL CHARACTERIZATION OF WELDED AL6060-T5 ALLOY JOINTS BY FRICTION STIR SPOT WELDING UNDER CORROSION ATACK
DOI:
https://doi.org/10.18066/revistaunivap.v31i71.4567Keywords:
Aluminum Alloy Al6060-T5, corrosion resistance, friction welding, FSSW, immersion corrosionAbstract
Al6060-T5 alloys are widely used in the aerospace, shipbuilding and automotive industries. Nevertheless, the conventional welding process could be weakening its resistance to corrosion. Thus, Friction Stir Spot Welding (FSSW) becomes an alternative to reduce the thermally affected zone (HAZ) at the joints. Although, persist a lack of studies, on current literature, about these welding properties; as welds its corrosion resistance. With this in mind, this present paper evaluated an Al6060-T5 alloy plates welds after periods of 336, 672 and 1008 hours into 3.5% NaCl electrolyte immersion. Where, for each period, the plates were evaluated in terms of open circuit potentials (OCP), micro hardness Vickers, elemental composition and its corrosion severity. The results shown a percentage increasing of oxygen rate (3 to 4%); identifying corrosive activity in the mixing zone. Likewise, electrochemical tests shown a greater susceptibility to corrosion at weld nearing centre regions; due to Mg and Si precipitates presence. Even so, all immersion times samples presented a mild corrosive severity
Downloads
References
Ahmed, S., Anwar, S., Islam, S., & Arifuzzaman, M. (2023). Experimental study on the effects of three alloying elements on the mechanical, corrosion and microstructural properties of aluminium alloys. Results in Materials, 20(2023), 100485, https://doi.org/10.1016/j.rinma.2023.100485
Aita, C. A. G. (2017). Study of the mechanical performance of friction stir spot welding (FSSW) joints of AA6060-T5 alloy. [Thesis Master on Engineering], Materials Technology, Strict Sensu Postgraduate Degree in Engineering at the Federal University of Pampa.
Aita, C. A. G., Goss, I. C., Rosendo, T. S., Tier, M. D., Wiedenhöft, A., & Reguly, A. (2020). Shear strength optimization for FSSW AA6060-T5 joints by Taguchi and full factorial design. Journal of materials research and technology, 9(6), 16072-16079, https://doi.org/10.1016/j.jmrt.2020.11.062
American Society for Testing & Materials. (2019). ASTM B117-85: Standard Practice for Operating Salt Spray (Fog) Apparatus.
American Society for Testing & Materials. (2022). ASTM G110-92: Standard Practice for Evaluating Intergranular Corrosion Resistance of Heat Treatable Aluminium Alloys by Immersion in Sodium Chloride + Hydrogen Peroxide Solution.
American Society for Testing & Materials. (1999). ASTM G1-90: Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens.
American Society for Testing & Materials. (2021). ASTM G44-21: Standard Practice for Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5 % Sodium Chloride Solution.
American Society for Testing & Materials. (2021). ASTM G46-21: Norma: Standard Guide for Examination and Evaluation of Pitting Corrosion. West Conshohocken, 2021.
Assis, C. L. (2017). Study of the corrosion behaviour of friction stir welded (FSW) aluminium alloys using global and local electrochemical techniques. [Thesis on Sciences], Chemistry Engineering, Polytechnic School of the University of São Paulo.
Associação Brasileira de Alumínio. (2023). Anuário Estatístico do Alumínio ABAL - 2022 (1. ed.).
Bard, A. J., & Faulkner, L. R., (2000). Electrochemical Methods: Fundamentals and Applications (2. ed.). Wiley.
Bertouli, P. T. (2012). Development and characterization of a polyester-based powder paint containing montmorillonite functionalized with silane. [Thesis Master on Process Engineering Processes and Technologies], Engineering Process and Technology, Engineering of Processes and Technologies at the University of Caxias do Sul.
Birbillis, N., & Buchheit, R.G. (2005). Electrochemical Characteristics of Intermetallic Phases in Aluminium Alloys. Journal of The Electrochemical Society, 152(4), B140-B151. https://doi:10.1149/1.1869984
Bousquet, E., Poulon-Quintin, A., Puiggali, M., Devos, O., & Touzet, M. (2011). Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint. Corrosion Science, 53(2011), 3026–3034. http://dx.doi.org/doi:10.1016/j.corsci.2011.05.049
British Standards. (2005). EN 11463-08: Corrosion of metals and alloys — Guidelines for the evaluation of pitting corrosion. British Standards Institution
Callister Jr., W. D., & Rethwisch, D. G. (2014). Materials Science and Engineering an Introduction (9.ed.). Willey.
Dehnavi, D., Liub, X. Y., Luanb, B. L., Shoesmith, D. W., & Rohani, S. (2014). Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy. Surface & Coatings Technology, 251(2014), 106–114. http://dx.doi.org/10.1016/j.surfcoat.2014.04.010
Eckermann, F., Sutera, T., Uggowitzerb, P. J., Afsethc, A., & Schmutza, P. (2008). The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochimica Acta 54, (2008), 844–855. https://doi:10.1016/j.electacta.2008.05.078
Ezuber, H., El-Houd, A., El-Shaweshet, F. (2008). A study on the corrosion behaviour of aluminium alloys in seawater. Materials and Design, 29(2008), 801–805. https://doi:10.1016/j.matdes.2007.01.021
Fonda, R. W., Pao, P. S., Jones, H. N., Feng, C. R., Connolly, B. J., & Davenport, A. J. (2009). Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456. Materials Science and Engineering A, 519(2009), 1–8. https://doi:10.1016/j.msea.2009.04.034
Gentil, V. (2023). Corrosão. (7. ed.). LTC.
International Organization For Standardization. (2000). ISO 14273: Resistance welding — Destructive testing of welds — Specimen dimensions and procedure for tensile shear testing resistance spot and embossed projection welds. ISO.
Jesuíno, G. A., Ribeiro, L. M. F., Nakazato, R. Z., Codaro, E. N., & Hein, L. R. de O. (2001). Mechanical Properties and Corrosion Resistance of Ti-4Al-4V Alloy Obtained from the Recycling of Ti-6Al-4V Alloy. Materials Research, 4(2), 63-69, 2001.
Koch, G. (2017). Cost of corrosion. In A. M. El-Sherik (Org.), Trends in Oil and Gas Corrosion Research and Technologies (pp. 3–30). Elsevier. https://doi.org/10.1016/B978-0-08-101105-8.00001-2
Kumar, A., Arora, K. S., Gupta, R. K., & Harmain, G. A. (2019). Investigation on interface morphology and joint configuration of dissimilar sheet thickness FSSW of marine grade Al alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(381), https://doi.org/10.1007/s40430-019-1882-9
Li, M., Zhang, C., Wang, D., Zhou, L., Wellmann, D., & Tian, Y. (2020). Friction Stir Spot Welding of Aluminium and Copper: A Review. Materials, 13(156). https://doi.org/doi:10.3390/ma13010156
Liang, M., Melchers, R., & Chaves, I. (2018). Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones. Corrosion Science, 140, 286–296. https://doi.org/10.1016/j.corsci.2018.05.036
Liao, C., & Wei, R. P. (1999). Galvanic coupling of model alloys to aluminium — a foundation for understanding particle-induced pitting in aluminium alloys. Electrochimica Acta, 45(1999), 881–888.
Liz, Z., Li, C., Gao, Z., Liu, Y., Liu, X., Guoa, Q., Yu, L., & Li, H. (2015). Corrosion behaviour of Al–Mg 2 Si alloys with/without addition of Al–P master alloy. Materials Characterization, 110(2015), 170–174, http://dx.doi.org/10.1016/j.matchar.2015.10.028
Lumsden, J. B., Mahoney, M. W., Rhodes, C. G., & Pollock, G. A. (2003). Corrosion Behavior of Friction-Stir-Welded AA7050-T7651. Corrosion, 59(3), 212–219. https://doi.org/10.5006/1.3277553
Osório, W. R., Peixoto, L. C., Goulart, P. R., & Garcia, A. (2010). Electrochemical Corrosion Parameters of As-Cast Al-Fe Alloys in a NaCl solution. Corrosion Science, 52(2010), 2979–2993, https://doi:10.1016/j.corsci.2010.05.011
Rana, R. S., Purohit, R., & Das, S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and research publications, 2(6), 1-7.
Rao, A. U., Vasu, V., Govindaraju, M., & Srinadh, K. S. (2016). Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review. Transactions of Nonferrous Metals Society of China, 26(6), 1447-1471. https://doi.org/10.1016/S1003-6326(16)64220-6
Rodrigues, E. A. (2012). Corrosion and mechanical properties tensile and fatigue of aluminum alloy 7050-T73651 in ethanol fuel. [Thesis Doctoral on Mechanical Engineering], Mechanical Engineering, Faculty of Mechanical Engineering of University of Campinas.
Rosendo, T., Parra, B., Tier, M. A. D., da Silva, A. A. M., dos Santos, J. F., Strohaecker, T. R., & Alcântara, N. G. (2011). Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy. Materials and Design, 32(2011), 1094–1100, https://10.1016/j.matdes.2010.11.017
Sharma, C., Tripathi, A., Upadhyay, V., Verma, V. & Sharma, S. K. (2021). Friction Stir Spot Welding-Process and Weld Properties: A Review. Journal of The Institution of Engineers (India): Series D, 102, 549–565, https://doi.org/10.1007/s40033-021-00276-z
The Welding Institute. (2024). Friction Stir Welding. Available: https://www.twi-global.com/technical-knowledge/job-knowledge/friction-stir-welding-147. Access: 08/02/2024.
Vale, N. L., Torres, E. A., Santos, T. F. A., Urtiga Filho, S. L., & dos Santos, J. F. (2018). Effect of the energy input on the microstructure and mechanical behaviour of AA2024-T351 joint produced by friction stir welding. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(467), https://doi.org/10.1007/s40430-018-1372-5
Was, G.S. Ampornrat, P., Gupta, G., Teysseyre, S., West, E. A., Allen, T. R., Sridharan, K., Tan, L., Chen, Y., Ren, X., & Pister, C. (2007). Corrosion and stress corrosion cracking in supercritical water. Journal of Nuclear Materials, 371(2007), 176–201, https://doi.org/doi:10.1016/j.jnucmat.2007.05.017
Zeng, F. L., Wei, Z. L., Li, J. F., Li, C. X., Xing, T. A. N., Zhang, Z., & Zheng, Z. Q. (2011). Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Transactions of Nonferrous Metals Society of China, 21(12), 2559-2567. https://10.1016/S1003-6326(11)61092-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Univap

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode