FOTÓLISE DE GELO DE ÁGUA POR RAIOS-X MOLES E A PRODUÇÃO DE H2O2 DURANTE AS FASES DE IRRADIAÇÃO E AQUECIMENTO
PHOTOLYSIS OF ASTROPHYSICAL WATER ICE BY SOFT X-RAYS AND THE PRODUCTION OF H2O2 DURING THE PHASES OF IRRADIATION AND HEATING
DOI:
https://doi.org/10.18066/revistaunivap.v29i61.4386
Abstract
Astrophysical water-rich ices are always exposed to ionizing radiation in space, as well as, are exposed to eventual temperature changes. In the laboratory, the studies of such ices allow us to understand their behavior and chemical changes, allowing also the quantification of important physicochemical parameters of the ice. In the present work, a sample of water ice at 12 K was irradiated by soft X-rays in the SGM beamline of LNLS/CNPEM until reaching chemical equilibrium, and then it was heated up to 220 K. Using infrared spectroscopy (IR), we mapped the chemical evolution of the sample and quantified the production of its main product, the H2O2 molecule. The study has implications for the chemistry of star-forming regions as well as cold regions of the solar system.
Downloads
Download data is not yet available.
References
Bergman, P., Parise, B., Liseau, R., Larsson, B., Olofsson, H., Menten, K. M., & Güsten, R. (2011). Detection of interstellar hydrogen peroxide. Astronomy & Astrophysics, 531, L8.
Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. (1987). Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophysical Journal, 315(2), 621-645.
Boogert, A., Tielens, A., Ceccarelli, C., Boonman, A., Van Dishoeck, E., Keane, J, DCB Whittet, & T. De Graauw. Infrared Observations of Hot Gas and Cold Ice toward the Low Mass Protostar Elias 29. Astronomy and Astrophysics (Berlin) 360(2), 683-698..
Boudin, N., Schutte, W. A., & Greenberg, J. M. (1998). Constraints on the abundances of various molecules in interstellar ice: laboratory studies and astrophysical implications. Astronomy and Astrophysics, 331, 749-759.
Carlson, R. W., Anderson, M. S., Johnson, R. E., Smythe, W. D., Hendrix, A. R., Barth, C. A., Soderblom, L. A., Hansen, G. B., Mccord, T. B., Dalton, J. B., Clark, R. N., Shirley, J. H., Ocampo, A. C. & Matson, D. L. (1999) Hydrogen peroxide on the surface of Europa. Science, 283(5410), 2062-2064.
Carvalho, G. A. & Pilling, S. (2020a). X-ray photolysis of CH3COCH3 ice: implications for the radiation effects of compact objects towards astrophysical ices. MRNAS, 498(1), 689-701.
Carvalho, G. A.& Pilling, S. (2020b). Photolysis of CH3CN Ices by Soft X-rays: Implications for the Chemistry of Astrophysical Ices at the Surroundings of X-ray Sources. The Journal of Physical Chemistry A, 124(41), 8574-8584.
Clancy, R. T., Sandor, B. J., & Moriarty-Schieven, G. H. (2004). A measurement of the 362 GHz absorption line of Mars atmospheric H2O2. Icarus, 168(1), 116-121.
Cooper, P. D., Moore, M. H., & Hudson, R. L. (2006). Infrared detection of HO2 and HO3 radicals in water ice. The Journal of Physical Chemistry A, 110(26), 7985-7988.
Du, F., Parise, B., & Bergman, P. (2012). Production of interstellar hydrogen peroxide (H2O2) on the surface of dust grains. Astronomy & Astrophysics, 538 A91.
Encrenaz, T., Bézard, B., Greathouse, T., Richter, M., Lacy, J., Atreya, S., Wong, A. S, Lebonnois, S., Lefèvre, F & Forget, F. (2004). Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. Icarus, 170(2), 424-429.
Freitas, F. M. & Pilling, S. (2020). Laboratory investigation of X-ray photolysis of methanol ice and its implication on astrophysical environments. Química Nova, (43), 521-527.
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. (2004). Interstellar ice: the infrared space observatory legacy. The astrophysical journal supplement series, 151(1), 35.
Kulikov, M. Y., Feigin, A. M., & Schrems, O. (2019). H2O2 photoproduction inside H2O and H2O: O2 ices at 20–140 K. Scientific reports, 9(1), 1-9.
Loeffler, M. J., Raut, U., Vidal, R. A., Baragiola, R. A., & Carlson, R. W. (2006). Synthesis of hydrogen peroxide in water ice by ion irradiation. Icarus, 180(1), 265-273.
Moore, M. H.& Hudson, R. L. (2000). IR detection of H2O2 at 80 K in ion-irradiated laboratory ices relevant to Europa. Icarus, 145(1), 282-288.
Munoz Caro, G. M., Ciaravella, A., Jiménez-Escobar, A., Cecchi-Pestellini, C., González-Díaz, C., & Chen, Y. J. (2019). X-ray versus ultraviolet irradiation of astrophysical ice analogs leading to formation of complex organic molecules. ACS Earth and Space Chemistry, 3(10), 2138-2157.
Pilling, S., Duarte, E. S., Da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P. (2010a). Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments. Astronomy & Astrophysics, 509, A87.
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2010b). Radiolysis of H2O: CO2 ices by heavy energetic cosmic ray analogs. Astronomy & Astrophysics, 523, A77.
Pilling, S.& Bergantini, A. (2015). The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects. The Astrophysical Journal, 811(2), 151.
Pilling, S., Rocha, W. R. M., Freitas, F. M., & Da Silva, P. A. (2019). Photochemistry and desorption induced by X-rays in water rich astrophysical ice analogs: implications for the moon Enceladus and other frozen space environments. RSC Advances, 9(49), 28823-28840.
Pilling, S., Carvalho, G. A., & Rocha, W. R. (2022). Chemical Evolution of CO2 Ices under Processing by Ionizing Radiation: Characterization of Nonobserved Species and Chemical Equilibrium Phase with the Employment of PROCODA Code. The Astrophysical Journal, 925(2), 147.
Rachid, M. G., Faquine, K. & Pilling, S. (2017). Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium. Planetary and Space Science, 149, 83-93.
Smith, R. G., Charnley, S. B., Pendleton, Y. J., Wright, C. M., Maldoni, M. M., & Robinson, G. (2011). On the formation of interstellar water ice: constraints from a search for hydrogen peroxide ice in molecular clouds. The Astrophysical Journal, 743(2) 131.
Tielens, A. G. G. M.& Hagen, W. (1982). Model calculations of the molecular composition of interstellar grain mantles. Astronomy and Astrophysics, 114, 245-260.
Vasconcelos, F. de A. et al. (2017). Energetic processing of N2: CH4 ices employing X-Rays and swift ions: implications for icy bodies in the outer solar system. The Astrophysical Journal, 850 (2), 174.
Zheng, W., Jewitt, D., & Kaiser, R. I. (2006a). Formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. The Astrophysical Journal, 639(1), 534.
Zheng, W., Jewitt, D., & Kaiser, R. I. (2006b). Temperature dependence of the formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. The Astrophysical Journal, 648(1), 753.
Downloads
Published
2023-03-28
How to Cite
Oliveira, S. P. G. de, & da Silva, R. de C. (2023). PHOTOLYSIS OF ASTROPHYSICAL WATER ICE BY SOFT X-RAYS AND THE PRODUCTION OF H2O2 DURING THE PHASES OF IRRADIATION AND HEATING. Revista Univap, 29(61). https://doi.org/10.18066/revistaunivap.v29i61.4386
Issue
Section
Ciências Exatas e da Terra
License
Copyright (c) 2023 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v29i61.4386Abstract
Astrophysical water-rich ices are always exposed to ionizing radiation in space, as well as, are exposed to eventual temperature changes. In the laboratory, the studies of such ices allow us to understand their behavior and chemical changes, allowing also the quantification of important physicochemical parameters of the ice. In the present work, a sample of water ice at 12 K was irradiated by soft X-rays in the SGM beamline of LNLS/CNPEM until reaching chemical equilibrium, and then it was heated up to 220 K. Using infrared spectroscopy (IR), we mapped the chemical evolution of the sample and quantified the production of its main product, the H2O2 molecule. The study has implications for the chemistry of star-forming regions as well as cold regions of the solar system.
Downloads
References
Bergman, P., Parise, B., Liseau, R., Larsson, B., Olofsson, H., Menten, K. M., & Güsten, R. (2011). Detection of interstellar hydrogen peroxide. Astronomy & Astrophysics, 531, L8.
Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. (1987). Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophysical Journal, 315(2), 621-645.
Boogert, A., Tielens, A., Ceccarelli, C., Boonman, A., Van Dishoeck, E., Keane, J, DCB Whittet, & T. De Graauw. Infrared Observations of Hot Gas and Cold Ice toward the Low Mass Protostar Elias 29. Astronomy and Astrophysics (Berlin) 360(2), 683-698..
Boudin, N., Schutte, W. A., & Greenberg, J. M. (1998). Constraints on the abundances of various molecules in interstellar ice: laboratory studies and astrophysical implications. Astronomy and Astrophysics, 331, 749-759.
Carlson, R. W., Anderson, M. S., Johnson, R. E., Smythe, W. D., Hendrix, A. R., Barth, C. A., Soderblom, L. A., Hansen, G. B., Mccord, T. B., Dalton, J. B., Clark, R. N., Shirley, J. H., Ocampo, A. C. & Matson, D. L. (1999) Hydrogen peroxide on the surface of Europa. Science, 283(5410), 2062-2064.
Carvalho, G. A. & Pilling, S. (2020a). X-ray photolysis of CH3COCH3 ice: implications for the radiation effects of compact objects towards astrophysical ices. MRNAS, 498(1), 689-701.
Carvalho, G. A.& Pilling, S. (2020b). Photolysis of CH3CN Ices by Soft X-rays: Implications for the Chemistry of Astrophysical Ices at the Surroundings of X-ray Sources. The Journal of Physical Chemistry A, 124(41), 8574-8584.
Clancy, R. T., Sandor, B. J., & Moriarty-Schieven, G. H. (2004). A measurement of the 362 GHz absorption line of Mars atmospheric H2O2. Icarus, 168(1), 116-121.
Cooper, P. D., Moore, M. H., & Hudson, R. L. (2006). Infrared detection of HO2 and HO3 radicals in water ice. The Journal of Physical Chemistry A, 110(26), 7985-7988.
Du, F., Parise, B., & Bergman, P. (2012). Production of interstellar hydrogen peroxide (H2O2) on the surface of dust grains. Astronomy & Astrophysics, 538 A91.
Encrenaz, T., Bézard, B., Greathouse, T., Richter, M., Lacy, J., Atreya, S., Wong, A. S, Lebonnois, S., Lefèvre, F & Forget, F. (2004). Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. Icarus, 170(2), 424-429.
Freitas, F. M. & Pilling, S. (2020). Laboratory investigation of X-ray photolysis of methanol ice and its implication on astrophysical environments. Química Nova, (43), 521-527.
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. (2004). Interstellar ice: the infrared space observatory legacy. The astrophysical journal supplement series, 151(1), 35.
Kulikov, M. Y., Feigin, A. M., & Schrems, O. (2019). H2O2 photoproduction inside H2O and H2O: O2 ices at 20–140 K. Scientific reports, 9(1), 1-9.
Loeffler, M. J., Raut, U., Vidal, R. A., Baragiola, R. A., & Carlson, R. W. (2006). Synthesis of hydrogen peroxide in water ice by ion irradiation. Icarus, 180(1), 265-273.
Moore, M. H.& Hudson, R. L. (2000). IR detection of H2O2 at 80 K in ion-irradiated laboratory ices relevant to Europa. Icarus, 145(1), 282-288.
Munoz Caro, G. M., Ciaravella, A., Jiménez-Escobar, A., Cecchi-Pestellini, C., González-Díaz, C., & Chen, Y. J. (2019). X-ray versus ultraviolet irradiation of astrophysical ice analogs leading to formation of complex organic molecules. ACS Earth and Space Chemistry, 3(10), 2138-2157.
Pilling, S., Duarte, E. S., Da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P. (2010a). Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments. Astronomy & Astrophysics, 509, A87.
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Da Silveira, E. F. (2010b). Radiolysis of H2O: CO2 ices by heavy energetic cosmic ray analogs. Astronomy & Astrophysics, 523, A77.
Pilling, S.& Bergantini, A. (2015). The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects. The Astrophysical Journal, 811(2), 151.
Pilling, S., Rocha, W. R. M., Freitas, F. M., & Da Silva, P. A. (2019). Photochemistry and desorption induced by X-rays in water rich astrophysical ice analogs: implications for the moon Enceladus and other frozen space environments. RSC Advances, 9(49), 28823-28840.
Pilling, S., Carvalho, G. A., & Rocha, W. R. (2022). Chemical Evolution of CO2 Ices under Processing by Ionizing Radiation: Characterization of Nonobserved Species and Chemical Equilibrium Phase with the Employment of PROCODA Code. The Astrophysical Journal, 925(2), 147.
Rachid, M. G., Faquine, K. & Pilling, S. (2017). Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium. Planetary and Space Science, 149, 83-93.
Smith, R. G., Charnley, S. B., Pendleton, Y. J., Wright, C. M., Maldoni, M. M., & Robinson, G. (2011). On the formation of interstellar water ice: constraints from a search for hydrogen peroxide ice in molecular clouds. The Astrophysical Journal, 743(2) 131.
Tielens, A. G. G. M.& Hagen, W. (1982). Model calculations of the molecular composition of interstellar grain mantles. Astronomy and Astrophysics, 114, 245-260.
Vasconcelos, F. de A. et al. (2017). Energetic processing of N2: CH4 ices employing X-Rays and swift ions: implications for icy bodies in the outer solar system. The Astrophysical Journal, 850 (2), 174.
Zheng, W., Jewitt, D., & Kaiser, R. I. (2006a). Formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. The Astrophysical Journal, 639(1), 534.
Zheng, W., Jewitt, D., & Kaiser, R. I. (2006b). Temperature dependence of the formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. The Astrophysical Journal, 648(1), 753.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode