SIMULAÇÃO EXPERIMENTAL DO BOMBARDEIO DE GELO DE METANOL POR ELÉTRONS RÁPIDOS E SUA IMPLICAÇÃO EM ASTROQUÍMICA
EXPERIMENTAL SIMULATION OF FAST ELECTRON BOMBARDMENT OF METHANOL ICE AND ITS IMPLICATIONS IN ASTROCHEMISTRY
DOI:
https://doi.org/10.18066/revistaunivap.v29i61.4401
Abstract
In this work, we experimentally simulate the methanol (CH3OH) ice behavior (12 K) through the bombarded by fast electrons (4.9 keV) in an attempt to simulate radiation chemistry induced by radiation in space environments. The sample analysis by infrared spectroscopy reveals the appearance of new species, including CO2, CO, H2O, and CH4, during the sample bombardment. We have quantified the effective destruction cross-section of methanol (5.5 × 10-19 cm2) and determined the formation cross-section for these newly produced species. Additionally, we have characterized the chemical equilibrium (CE) phase, which becomes evident at higher fluences. We have also calculated molecular abundances and assessed the desorption yield induced by fast electrons within the same sample. Furthermore, we estimated the timescale required to achieve chemical equilibrium in specific astrophysical environments impacted by electrons. This study significantly contributes to our comprehension of electron bombardment behavior in astrophysical ices and allows for meaningful comparisons with organic-rich ices in space environments
Downloads
Download data is not yet available.
References
Ball, J. A., Gottlieb, C. A., Lilley, A. E., & Radford, H. E. (1970). Detection of methyl alcohol in Sagittarius. Astrophysical Journal, 162, L203.
Bockelée-Morvan, D., Crovisier, J., Colom, P., & Despois, D. (1994). The rotational lines of methanol in comets Austin 1990 V and Levy 1990 XX. Astronomy and Astrophysics, 287, 647-665.
Bonfim, V. S., Castilho, R. B., Baptista, L., & Pilling, S. (2017). SO 3 formation from the X-ray photolysis of SO 2 astrophysical ice analogues: FTIR spectroscopy and thermodynamic investigations. Physical Chemistry Chemical Physics, 19(39), 26906-26917.
Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M. C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160.
Ciaravella, A., Jiménez-Escobar, A., Cosentino, G., Cecchi-Pestellini, C., Peres, G., Candia, R., Collura, A., Barbera, M., Di Cicca, G., Varisco, S., & Venezia, A. M. (2018). Chemical evolution of interstellar methanol ice analogs upon ultraviolet irradiation: the role of the substrate. The Astrophysical Journal, 858(1), 35.
Favre, C., Vastel, C., Jimenez-Serra, I., Quénard, D., Caselli, P., Ceccarelli, C., Chacón-Tanarro, A., Fontani, F., Holdship, J., Oya, Y., Punanova, A., Sakai, N., Spezzano, S., Yamamoto, S., Neri, R., López-Sepulcre, A., Alves, F., Bachiller, R., Balucani, N., … Witzel, A. (2020). Seeds of Life in Space (SOLIS). Astronomy & Astrophysics, 635, A189. https://doi.org/10.1051/0004-6361/201937297
Freitas, F. M., & Pilling, S. (2020). Laboratory investigation of X-ray photolysis of methanol ice and its implication on astrophysical environments. Química nova, 43, 521-527. https://doi.org/10.21577/0100-4042.20170510.
Friberg, P., Madden, S. C., Hjalmarson, A., & Irvine, W. M. (1988). Methanol in dark clouds. Astronomy and Astrophysics, 195, 281-289.
Hovongton, P., & Drouin, D. (2007). Casino: Monte Carlo simulation of electron trajectory in solids. http://www.gel.usherbrooke.ca/casino/.
Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid-and far-infrared spectroscopy of ices-Optical constants and integrated absorbances. Astrophysical Journal Supplement Series, 86, (2), 713-870.
Irvine, W. M., Goldsmith, P. F., & Hjalmarson, Å. (1987). Chemical abundances in molecular clouds. In D. J. Hollenbach & H. A, Thronson Jr. (Eds). Proceedings of the Symposium on Interstellar Processes (pp. 560-609). Springer.
Millar, T. J., Bennett, A., Rawlings, J. M. C., Brown, P. D., & Charnley, S. B. (1991). Gas phase reactions and rate coefficients for use in astrochemistry-The UMIST ratefile. Astronomy and Astrophysics Supplement Series, 87, 3, 585-619. SERC-supported research., 87, 585-619.
Parise, B., Ceccarelli, C., Tielens, A. G. G. M., Castets, A., Caux, E., Lefloch, B., & Maret, S. (2006). Testing grain surface chemistry: a survey of deuterated formaldehyde and methanol in low-mass class 0 protostars. Astronomy & Astrophysics, 453(3), 949-958.
Pilling, S., & Bergantini, A. (2015). The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects. The Astrophysical Journal, 811(2), 151.
Pilling, S., Rocha, W. R. M., Freitas, F. M., & Da Silva, P. A. (2019). Photochemistry and desorption induced by X-rays in water rich astrophysical ice analogs: implications for the moon Enceladus and other frozen space environments. Royal Society of Chemistry Advances, 9(49), 28823-28840.
Portugal, W., Pilling, S., Boduch, P., Rothard, H., & Andrade, D. P. (2014). Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form. Monthly Notices of the Royal Astronomical Society, 441(4), 3209-3225.
Rachid, M. G., Faquine, K., & Pilling, S. (2017). Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium. Planetary and Space Science, 149, 83-93.
Tielens, A.G.G.M., & Allamandola, L.J. (1987). Composition, Structure, and Chemistry of Interstellar Dust. In: D.J. Hollenbach & H.A. Thronson, (eds) Proceedings of the Symposium on Interstellar Processes (pp 397–470). Springer.
Vasconcelos, F. D. A., Pilling, S., Rocha, W. R., Rothard, H., & Boduch, P. (2017). Energetic processing of N2: CH4 ices employing X-Rays and swift ions: implications for icy bodies in the outer solar system. The Astrophysical Journal, 850(2), 174.
Walsh, C., Loomis, R. A., Öberg, K. I., Kama, M., van’t Hoff, M. L., Millar, T. J., Aikawa, Y., Herbst, E., Weaver, S. L. W., & Nomura, H. (2016). First detection of gas-phase methanol in a protoplanetary disk. The Astrophysical Journal Letters, 823(1), L10.
Wang, S., Bergin, E. A., Crockett, N. R., Goldsmith, P. F., Lis, D. C., Pearson, J. C., ... & Zmuidzinas, J. (2011). Herschel observations of EXtra-Ordinary Sources (HEXOS): Methanol as a probe of physical conditions in Orion KL. Astronomy & Astrophysics, 527, A95.
Downloads
Published
2023-11-14
How to Cite
Moreira Freitas, F., & Pilling, S. (2023). EXPERIMENTAL SIMULATION OF FAST ELECTRON BOMBARDMENT OF METHANOL ICE AND ITS IMPLICATIONS IN ASTROCHEMISTRY. Revista Univap, 29(61). https://doi.org/10.18066/revistaunivap.v29i61.4401
Issue
Section
Ciências Exatas e da Terra
License
Copyright (c) 2023 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode
DOI:
https://doi.org/10.18066/revistaunivap.v29i61.4401Abstract
In this work, we experimentally simulate the methanol (CH3OH) ice behavior (12 K) through the bombarded by fast electrons (4.9 keV) in an attempt to simulate radiation chemistry induced by radiation in space environments. The sample analysis by infrared spectroscopy reveals the appearance of new species, including CO2, CO, H2O, and CH4, during the sample bombardment. We have quantified the effective destruction cross-section of methanol (5.5 × 10-19 cm2) and determined the formation cross-section for these newly produced species. Additionally, we have characterized the chemical equilibrium (CE) phase, which becomes evident at higher fluences. We have also calculated molecular abundances and assessed the desorption yield induced by fast electrons within the same sample. Furthermore, we estimated the timescale required to achieve chemical equilibrium in specific astrophysical environments impacted by electrons. This study significantly contributes to our comprehension of electron bombardment behavior in astrophysical ices and allows for meaningful comparisons with organic-rich ices in space environments
Downloads
References
Ball, J. A., Gottlieb, C. A., Lilley, A. E., & Radford, H. E. (1970). Detection of methyl alcohol in Sagittarius. Astrophysical Journal, 162, L203.
Bockelée-Morvan, D., Crovisier, J., Colom, P., & Despois, D. (1994). The rotational lines of methanol in comets Austin 1990 V and Levy 1990 XX. Astronomy and Astrophysics, 287, 647-665.
Bonfim, V. S., Castilho, R. B., Baptista, L., & Pilling, S. (2017). SO 3 formation from the X-ray photolysis of SO 2 astrophysical ice analogues: FTIR spectroscopy and thermodynamic investigations. Physical Chemistry Chemical Physics, 19(39), 26906-26917.
Bouilloud, M., Fray, N., Bénilan, Y., Cottin, H., Gazeau, M. C., & Jolly, A. (2015). Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Monthly Notices of the Royal Astronomical Society, 451(2), 2145-2160.
Ciaravella, A., Jiménez-Escobar, A., Cosentino, G., Cecchi-Pestellini, C., Peres, G., Candia, R., Collura, A., Barbera, M., Di Cicca, G., Varisco, S., & Venezia, A. M. (2018). Chemical evolution of interstellar methanol ice analogs upon ultraviolet irradiation: the role of the substrate. The Astrophysical Journal, 858(1), 35.
Favre, C., Vastel, C., Jimenez-Serra, I., Quénard, D., Caselli, P., Ceccarelli, C., Chacón-Tanarro, A., Fontani, F., Holdship, J., Oya, Y., Punanova, A., Sakai, N., Spezzano, S., Yamamoto, S., Neri, R., López-Sepulcre, A., Alves, F., Bachiller, R., Balucani, N., … Witzel, A. (2020). Seeds of Life in Space (SOLIS). Astronomy & Astrophysics, 635, A189. https://doi.org/10.1051/0004-6361/201937297
Freitas, F. M., & Pilling, S. (2020). Laboratory investigation of X-ray photolysis of methanol ice and its implication on astrophysical environments. Química nova, 43, 521-527. https://doi.org/10.21577/0100-4042.20170510.
Friberg, P., Madden, S. C., Hjalmarson, A., & Irvine, W. M. (1988). Methanol in dark clouds. Astronomy and Astrophysics, 195, 281-289.
Hovongton, P., & Drouin, D. (2007). Casino: Monte Carlo simulation of electron trajectory in solids. http://www.gel.usherbrooke.ca/casino/.
Hudgins, D. M., Sandford, S. A., Allamandola, L. J., & Tielens, A. G. G. M. (1993). Mid-and far-infrared spectroscopy of ices-Optical constants and integrated absorbances. Astrophysical Journal Supplement Series, 86, (2), 713-870.
Irvine, W. M., Goldsmith, P. F., & Hjalmarson, Å. (1987). Chemical abundances in molecular clouds. In D. J. Hollenbach & H. A, Thronson Jr. (Eds). Proceedings of the Symposium on Interstellar Processes (pp. 560-609). Springer.
Millar, T. J., Bennett, A., Rawlings, J. M. C., Brown, P. D., & Charnley, S. B. (1991). Gas phase reactions and rate coefficients for use in astrochemistry-The UMIST ratefile. Astronomy and Astrophysics Supplement Series, 87, 3, 585-619. SERC-supported research., 87, 585-619.
Parise, B., Ceccarelli, C., Tielens, A. G. G. M., Castets, A., Caux, E., Lefloch, B., & Maret, S. (2006). Testing grain surface chemistry: a survey of deuterated formaldehyde and methanol in low-mass class 0 protostars. Astronomy & Astrophysics, 453(3), 949-958.
Pilling, S., & Bergantini, A. (2015). The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects. The Astrophysical Journal, 811(2), 151.
Pilling, S., Rocha, W. R. M., Freitas, F. M., & Da Silva, P. A. (2019). Photochemistry and desorption induced by X-rays in water rich astrophysical ice analogs: implications for the moon Enceladus and other frozen space environments. Royal Society of Chemistry Advances, 9(49), 28823-28840.
Portugal, W., Pilling, S., Boduch, P., Rothard, H., & Andrade, D. P. (2014). Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form. Monthly Notices of the Royal Astronomical Society, 441(4), 3209-3225.
Rachid, M. G., Faquine, K., & Pilling, S. (2017). Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium. Planetary and Space Science, 149, 83-93.
Tielens, A.G.G.M., & Allamandola, L.J. (1987). Composition, Structure, and Chemistry of Interstellar Dust. In: D.J. Hollenbach & H.A. Thronson, (eds) Proceedings of the Symposium on Interstellar Processes (pp 397–470). Springer.
Vasconcelos, F. D. A., Pilling, S., Rocha, W. R., Rothard, H., & Boduch, P. (2017). Energetic processing of N2: CH4 ices employing X-Rays and swift ions: implications for icy bodies in the outer solar system. The Astrophysical Journal, 850(2), 174.
Walsh, C., Loomis, R. A., Öberg, K. I., Kama, M., van’t Hoff, M. L., Millar, T. J., Aikawa, Y., Herbst, E., Weaver, S. L. W., & Nomura, H. (2016). First detection of gas-phase methanol in a protoplanetary disk. The Astrophysical Journal Letters, 823(1), L10.
Wang, S., Bergin, E. A., Crockett, N. R., Goldsmith, P. F., Lis, D. C., Pearson, J. C., ... & Zmuidzinas, J. (2011). Herschel observations of EXtra-Ordinary Sources (HEXOS): Methanol as a probe of physical conditions in Orion KL. Astronomy & Astrophysics, 527, A95.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Univap
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International.
This license allows others to distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.
http://creativecommons.org/licenses/by/4.0/legalcode