OPTICAL POLARIMETRY AND MODELING OF POLARS OBSERVED IN OPD/LNA IN THE PERIOD 2010-2012

Karleyne M. G. Silva¹ Cláudia V. Rodrigues¹ Joaquim E. R. Costa¹ Deonísio Cieslinski¹ Leonardo A. Almeida¹ Victor S. Magalhães¹

RESUMO: Neste trabalho apresentamos os primeiros resultados do estudo de uma nova amostra de 7 candidatas a polares a partir de dados polarimétricos obtidos no observatório do Pico dos Dias / LNA. Dos 4 objetos analisados até o momento, confirmamos a presença de polarização alta e variável em 3, o que indica a presença de emissão ciclotrônica e sua classificação como polares. Esses dados serão modelados utilizando-se o código CYCLOPS.

Palavras-chave: variáveis cataclísmicas; estrelas binárias; polarimetria.

ABSTRACT: In this work, we present the first results of a study of a new sample of 7 polar candidates from polarimetric data obtained at the Pico dos Dias / LNA observatory. From the four polars analysed so far, we confirm the presence of high and variable polarization in 3. The data will be analysed using the code CYCLOPS. **Keywords:** cataclysmic variables; binary stars; polarimetry.

¹ Divisão de Astrofísica - Instituto Nacional de Pesquisas Espacias - INPE. E-mail: karleyne@gmail.com.

1. INTRODUÇÃO

As polares (Figura 1) são estrelas binárias onde existe a transferência de plasma entre as componentes do sistema devido à grande proximidade entre elas. O material proveniente da estrela doadora, uma anã vermelha, é capturado pelo intenso campo magnético da estrela receptora, uma anã branca. O material acumulado na superfície da anã branca forma uma região de acréscimo que emite radiação polarizada no óptico e radiação em raios X (CROPPER, 1990). Essa radiação é modulada com o período orbital do sistema.

Dois catálogos online llistam as polares e candidatas conhecidas: Downes (2001) apresenta cerca de 80 polares confirmadas e Ritter e Kolb (2003) apresenta 135 sistemas. entre candidatos não confirmados e polares. Dessa forma, 55 candidatas precisam de mais informações para sua classificação. A presença de emissão polarizada confirma ocorrência de emissão ciclotrônica da coluna de acréscimo, logo sua detecção confirma a classificação de uma polar. A não detecção de polarização não descarta a classificação como polar, pois há um grupo de sistemas que apresentam valores muito baixos de polarização (AMORIM, 2011).

O estudo de uma polar permite explorar cenários particulares determinados pela configuração geométrica específica de cada fonte, como a existência de uma ou duas regiões emissoras, a ocorrência de auto-eclipses, a ocorrência de absorção por material localizado no plano orbital ou ao longo das linhas do campo magnético e a distribuição de temperaturas e densidades ao longo da região de acréscimo. O estudo de uma amostra homogênea utilizando-se uma mesma metodologia permite determinar os fatores geométricos e ao excluí-los, estudar as propriedades físicas comuns a todas as polares.

2. DESENVOLVIMENTO

2.1 Descrição da amostra

Com o objetivo de compreender os processos físicos que ocorrem em polares, nosso grupo da Divisão de Astrofísica-INPE realizou medidas polarimétricas de um conjunto de 7 polares entre 2010 e 2012 realizadas no Observarvatório do Pico dos Dias/ LNA, utilizando o módulo polarimétrico no telescópio de 1.6 m. Estas candidatas a polares são: SWIFT J2319.4+2619, SWIFT J2218.5+1925, V393 Pav, V2301 Oph, CCS100216:1503-2207, 1RXS J1002-192534 e RX J0154.0-5947.

Objeto	Data	Filtro	Tempo de exposição (s)	Número de imagens
SWIFT J2319.4+2619	10-11/08/2010	V	100	128
	11-12/08/2010	R	60	144
	30/09-01/10/2010	V	90	83
	13-14/10/2010	V	90	125
	20-21/09/2011	R	200	64
SWIFT J2218.5+1925	03-04/11/2010	V	60	144
	14-15/06/2012	R	60	37
	15-16/06/2012	R	60	96
	16-17/06/2012	1	60	136
V393 Pav	09-10/08/2010	I	80	144
	10-11/08/2010	V	80	176
	11-12/08/2010	R	100	128
	08-09/10/2010	R	90 e 120	73
	13-14/10/2010	V	80	96
	14-15/10/2010	1	60 e 90	111
CCS100216:1503-2207	15-16/06/2012	R	60	80
	16-17/06/2012	R	60	100
	16-17/06/2012	V	60	128
	17-18/06/2012	1	50	160
	17-18/06/2012	V	50	129
1RXS J1002-192534	24-25/04/2012	V	60	176
	25-26/04/2012	1	90	161
RX J0154.0-5947	06-08/08/2010	V	30	97
	07-08/08/2010	V	30	144
	08-09/08/2010	1	40	160
	10-11/08/2010	V	40	53
	02-03/11/2010	R	30	240
	03-04/11/2010	1	30	128
V2301 Oph	06-07/08/2010	1	60	96
	07-08/08/2010	T T	60	121
	08-09/08/2010	R	30 e 60	160
	09-10/08/2010	1	50	160

Tabela 1 - Descrição dos dados de nossa amostra

A Tabela 1 apresenta o resumo das observações obtidas. Esses novos dados polarimétricos permitirão confirmar а classificação como polar. Nos casos confirmados, será realizada a modelagem da região de acréscimo com o código CYCLOPS. O CYCLOPS é um software que permite a modelagem de dados polarimétricos do óptico e de raios X conjuntamente, fornecendo a determinação parâmetros de físicos е geométricos polares (COSTA; de RODRIGUES, 2009; SILVA et al., 2013).

2.2 Polarimetria

O material ionizado capturado pelo campo magnético da anã branca realiza uma trajetória espiral ao longo das linhas de campo magnético. A emissão é polarizada devido ao processo de emissão ciclotrônica. Quando se observar radiação de material em movimento ao longo das linhas de campo magnético, tem-se polarização circular. Quando se observa o movimento perpendicularmente ao campo magnético tem-se polarização linear. À medida que a linha de visada do sistema muda, devido ao movimento próprio da binária, a polarização varia de uma para outra. Como algumas polares apresentam cerca de 50% de emissão polarizada, elas estão entre os objetos mais polarizados do céu.

utilizado 0 polarimetro nas observações, descrito em Magalhães et al. (1996), possui um prisma de calcita, que divide o feixe incidente em dois feixes com polarização perpendicular entre si e uma lâmina retardadora que altera a fase entre os dois feixes, incluindo uma modulação no sinal recebido quando se modifica o ângulo posição lâmina. Conforme de da apresentado em Rodrigues, Cieslinski e Steiner (1998), a intensidade das duas ordinária imagens geradas, (I_{o}) е extraordinária (le), relaciona-se com os parâmetros de Stokes I, Q, U e V do feixe

incidente através da relação estabelecida por Serkowski (1974):

$$\begin{split} 2I_{e,o} &= I + Q\cos^2 2 \ \psi_i \pm \\ U \sin 2 \ \Psi_i \cos 2 \ \Psi_i \pm V \sin 2 \ \Psi_i, \end{split}$$

onde i varia de 1 a 16 e representa a posição que o retardador assume durante as observações. Os valores ψ_i e $I_{e,o}$ são conhecidos, estes últimos dois medidos a partir de fotometria de abertura das imagens. Os parâmetros Q, U e V são, então, expressos por:

$$\begin{split} & \mathsf{Q} = \frac{1}{3} \, \sum_{i=1}^{8} \, X_i \, \cos^2 2 \, \Psi_i, \\ & \mathsf{U} = \sum_{i=1}^{8} \, X_i \, \sin^2 2 \, \Psi_i \, \cos 2 \, \Psi_i \, \epsilon \\ & \mathsf{V} = \frac{1}{4} \, \sum_{i=1}^{8} = 1 \, X_i \, \sin^2 2 \, \Psi_i. \end{split}$$

O grau de polarização linear (p) e o grau de polarização circular (v) são dados por:

$$p = \frac{Q^2 + U^2}{I^2}$$
 e $v = \frac{v}{I}$.

V(%)

100

(а^{ер} 100

50

0.46

0.48

HID - 2455417

O ângulo de polarização linear (θ) e a incerteza associada (σ_{θ}) são estimados a partir de:

V2301 Oph

2.3 Resultados da redução

As Figuras 2 e 3 apresentam as curvas de polarização das 4 polares analisadas até agora. V2301 Oph é uma polar eclipsante. Pode-se ver que sua polarização circular é consistente com zero, considerando as barras de erros (Figura 2, à esquerda). A polarização linear também é baixa, próxima de zero. Os pontos com erros grandes referem-se a medidas feitas durante o eclipse, quando o fluxo do objeto diminui bastante. De nossa amostra, V2301 Oph era o único sistema confirmado como polar via espectroscopia e o estudo em raios X, no entanto, não apresenta polarização. Polares com esse comportamento foram estudadas por Amorim (2011).

V393 Pav apresentou polarização circular alta, variando de -22 a 3% (Figura 2, à direita). Foram cobertos cerca de três períodos orbitais na banda R. A polarização linear é relativamente baixa. A redução de dados de outros filtros permitirá refinar a efemérides desta nova polar.

Revista Univap - Edição Especial - revista.univap.br São José dos Campos-SP-Brasil, v. 19, n. 34, nov.2013. ISSN 2237-1753

Figura 3 - Curva de polarização de SWIFT J2319.4+2619 à esquerda e RX J0154.0-5947, à direita. De cima para baixo, polarização circular (v), polarização linear (p) e ângulo da polarização linear (θ).

SWIFT J2319.4+2619, conforme mostrado na Figura 3 à esquerda, apresenta polarização circular variando de 0 a 15%, os dados que analisamos não cobrem o período orbital completo. A polarização linear é baixa, chegando, no máximo, a 5%.

RX J0154.0-5947, conforme apresentado na Figura 3 à direita, apresenta polarização circular variando de 2 a 13%, nunca chegando a zero. Foi feito um diagrama de fase utilizando-se a efeméride de Ramsay e Cropper (2004). Foi observado, aproximadamente, um período orbital completo. A polarização linear também é baixa, com valor médio de 4%.

3. CONCLUSÕES

Apresentamos aqui os primeiros resultados deste novo projeto, que consistiu na polarimetria de uma nova amostra. Verificamos a presença de polarização alta e variável em três das quatro polares analisadas até 0 momento. Esses resultados inserem-se em um projeto maior determinação dos parâmetros para geométricos e físicos de um grupo de polares de forma homogênea usando o CYCLOPS.

REFERÊNCIAS

AMORIM, R. R. Candidatos a variáveis cataclísmicas magnéticas com polarização baixa. 2011. 123 p. Dissertação (Mestrado) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2011.

COSTA, J. E. R.; RODRIGUES, C. V. Stokes imaging of AM Her systems using 3D inhomogeneous models - I. Description of the code and an application to V834 Cen. *Monthly Notices of the Royal Astronomical Society*, v. 398, p. 240-248, Sep. 2009.

CROPPER, M. The polars. *Space Science Reviews*, v. 54, p. 195-295, Dec. 1990.

DOWNES, R. A Catalog and Atlas of Cataclysmic Variables: The Living Edition. *Astronomical Society of the Pacific*, v. 113, n. 784, p. 764-768, jun. 2001.

MAGALHÃES, A. M. *et al.* High Precision CCD Imaging Polarimetry. Polarimetry of the interstellar medium. *Astronomical Society of* 10

the Pacific Conference Series, v. 97, p. 118-122, 1996.

RAMSAY, G.; CROPPER, M. The energy balance of polars revisited. *Monthly Notices of the Royal Astronomical Society*, v. 347, n. 2, p. 497-507, Jan. 2004.

RITTER, H.; KOLB, U. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects. *Astronomy and Astrophysics*, v. 404, p. 301-303, Jun. 2003.

RODRIGUES, C. V.; CIESLINSKI, D.; STEINER, J. E. Polarimetry and spectroscopy of the polar RX J1141.3-6410. *Astronomy and Astrophysics*, v. 335, p. 979-984, jul. 1998.

SERKOWSKI K. Polarimeters for Optical Astronomy. In: GEHRELS, T. (eds.) *Planets, Stars, and Nebulae Studied with Photopolarimetry.* Arizona, Univ. Arizona Press, 1974. p. 135.

SILVA, K. M. G. *et al.* Stokes imaging of AM Her systems using 3D inhomogeneous models - II. Modelling X-ray and optical data of CP Tucanae. *Monthly Notices of the Royal Astronomical Society*, v. 432, p. 1587-1599, 2013.